

Benjamin Hepburn

Horizontal systems - Theory, tools and Design

Geoenvironmental Research Centre, Cardiff School of Engineering, Cardiff University

Geoenvironmental Research Centre Calnolfan Ymchwil ddaearymgalcheddol T: +44 (0) 2920 874004 F: +44 (0) 2920 874004 email: grc@cf.ac.uk web: www.grc.cf.ac.uk

Introduction

Research AIM :	Improve knowledge related to the ground	
1	thermal behaviour due to heat extraction from	1
I L	GSH systems	

Work can be sub-divided into two categories, namely:

i) Experimental investigation -

Knowledge obtained from a horizontal ground loop site located in Powys, Mid-Wales

ii) Numerical investigation –

Numerical simulations investigating the behaviour and subsequent sensitivity analysis

Introduction

Our focus is mainly on the ground behaviour, not the above ground processes

Model Development

- Development of the numerical model COMPASS
 - Couple heat, moisture, mechanical and chemical behaviour
 - Previously developed to investigate the heat, moisture, mechanical and chemical behaviour in unsaturated soils
 - Applied to a range of geoenvironmental problems
 - Based on finite element and finite difference approach
- Development of boundary conditions related to ground source heat
 - The ground loop boundary
 - The surface boundary
- Verification and Validation with experimental data
 - Verification against various alternative solutions
 - Using experimental data from monitored site

Example simulation results showing the temperature distribution around a horizontal system

Factors to be considered when modelling

- Boundary conditions to prescribe
 - Ground loop boundary
 - Surface boundary
- Analysis type and model domain
 - Type, i.e. 2D or 3D
 - Size of the domain
 - Mesh density
- Material properties
 - Thermal conductivity, Wm⁻¹K⁻¹
 - Specific heat capacity, Jkg⁻¹K⁻¹

Section of a two dimensional mesh used to model the ground response from a horizontal GSH system

Boundary considerations – Horizontal ground loops

- Ground loop can be represented in a number of ways, with varying complexity:
 - Uniform steady or transient heat flux, Wm⁻²
 - Non-uniform steady or transient heat flux, Wm⁻²

- Ground surface boundary
 - Fixed temperature only
 - Radiation heat only
 - Coupled radiation and mass transfer

Boundary considerations – Ground loop surface

Surface Boundary Development – A coupled heat and mass

Why develop and apply a heat and mass surface boundary?

- 1. Latent heat flux component associated with evaporation
- 2. Water transfer in the ground

Coupled Heat and Mass Surface boundary: Energy Balance Equation

Geoenvironmental Research Centre Canolfan Ymchwil Ddaearamgylcheddol

$$S_{Flux} = H_{SW} + H_{Net LW} + H_{SO} + H_{LE}$$

where:

S _{Flux}	=	Overall surface heat flux, W m ⁻²
H _{SW}	=	Shortwave solar radiation, W m ⁻²
H _{Net LW}	=	Net longwave radiation, W m ⁻²
H _{SO}	=	Sensible heat transfer, W m ⁻²
H_{LE}	=	Latent heat transfer, W m-2

Coupled Heat and Mass Surface boundary: Latent Heat Calculation

$$H_{LE} = L.E$$

 $E = \rho_a f(u) \left(q_a - q_s \right)$

where:

L	=	Latent heat of vaporization, J kg ⁻¹
Ε	=	Water vapor flux, kg m ⁻² S ⁻¹
		*Latent heat of vaporization for water is 2260 KJ kg ¹ at sea level

CRC

Geoenvironmental Research Centre

where:

$ ho_a$	=	Air density, kg m ⁻³
f(u)	=	Transition function, non-dimensional
q_a	=	Air specific humidity, kg kg ⁻¹
q_s	=	Soil surface specific humidity, kg kg ⁻¹

Coupled Heat and Mass Surface boundary: Model Application

Inclusion of the surface boundary theory in COMPASS

Day No. from t = 0

Coupled Heat and Mass Surface boundary: Model Validation

Initial validation of the mass component of the developed boundary

Further developments – High Performance Computing

- Coupled heat and mass simulations will have <u>double</u> the number of freedoms than a heat only simulation
- Results in larger a system matrix and therefore more computational effort is required
- The domain size and simulation duration can become a problem
- Methods to reduce computational times...
 - Reducing mesh size
 - Serial code optimisation
 - Application of iterative solvers
 - High performance computing (HPC)
 - Parallel computational method

Intel quad core processor Q9300

SEREN: Where next?

Experimental project progress...

Experimental site development & installation

Data retrieval

Numerical project progress...

SEREN

Geoenvironmental Research Centre Canolfan Ymchwil Ddaearamgylcheddol

Many Thanks

Contact information: hepburnbd@cardiff.ac.uk

CARDIFF INVESTIGATION CARDIFF Canolfan Ymchwil Ddaearymgalcheddol