GSHPA Thermal Pile Standard

GSHPA Technical Seminar, Cardiff University

Thursday 27th September 2012

Duncan Nicholson

Arup - Director and UK & MEA Skills Network Leader

Presentation Contents

- **GSHPA** thermal pile and wall standard
 - Publish Sept 2012

- Responsibilities Design Contract
 - Engineer and Contractor designs
- Interfaces with M&E, GSHP and Pile Designers
 - M&E Heating and cooling loads
 - GSHP Designer Predicting pile temperatures
 - Pile Designer Impact of temperature change on piles
- Thermal /structural pile design
 - Thermal stresses, Movements, Cyclic effects

GSHPA Technical & Standards Committee

- Published Borehole Standard
 - Sept 2011
- Publishing Thermal Pile Standard
 - September 2012
- Scope
 - Aimed at designers, installers, architects, engineers, and main and sub-contractors involved with ground source systems
- Main text = Specification
- Appendices = Best practice

Download www.gshp.org.uk

Thermal Pile Standard – Sub committee (Started July 2011)

- **Duncan Nicholson** (Chair) Arup **Tony Amis** GIL **Paul Bailie** Arup Fleur Loveridge Southampton **Echo Ouyang** Cambridge **GSHPA** -Jake Salisbury **Peter Smith** Cementation
- Kenichi Soga
- Nic Wincott
- **Chris Wood**

(Secretary) Cambridge **NeoEnergy Bulliant / Nottingham Uni**

GSHPA - Thermal Pile Standard overview

Contents List

Sec 1 **Preamble (as BHS) - 1.2 Definitions Regulatory & Government Agency Requirements (as BHS)** Sec 2 Sec 3 **Contractual Responsibilities** Sec 4 **Training Requirements** Sec 5 Design Sec 6 **Thermal Response Testing Thermal Pile** Sec 7 **Pipe Materials and Jointing Methods Thermal Pile Concrete** Sec 8 Sec 9 **Loops Installation** Sec 10 **Pressure Testing Issue 1.0** 1st Actober 2012 Sec 11 **Indoor Piping / Values (as BHS)** Sec 12 **Thermal Transfer Fluids (as BHS)** Sec 13 **Design Drawings** Sec 14 **Monitoring and Checking** Sec 15 Alterations

GSHPA -Thermal Pile Standard overview

Appendices – Guidance notes

 A 	Fluid temperatures	(Fleur)
■ B	Thermal soil properties	(Fleur)
• C	Soil properties	(Arup)
D	Load transfer mechanisms	(Kenichi)
• E	SLS design considerations	(Kenichi)
• F	Design charts	(Kenichi)
G G	Concrete conductivity	(Fleur)
• H	Thermal loops in pile cover	zone (Arup)

ARUP

Other thermal pile guidance - see Appendix A

- NHBC Guide Section 6.6 (2010)
 - National House Building Council NHBC, (2010)
 Efficient design of piled foundations for low-rise houses

Links to Code for Sustainable Homes (2006)

- National standard for sustainable design and construction
- Interim code levels for energy and CO2 emissions targets

Other Codes

- Swiss SIA D0190 (2005)
- German VDI 4640 (1998)

Section 3 - Responsibilities

- Many contractual parties clear division of responsibilities
- ICE Specification for Piling and Embedded Retaining Walls (SPERW) is the starting point:
 - Engineer design
 - Contractor design

Section 3.2 - ICE SPERW Design Responsibility

Who is responsible for the thermal loop design?

Consultant (Engineer) or Contractor

Design Responsibility	Engineer	Contractor
 Design of foundation scheme (including SWL and pile location) 		
2. Choice of piling or walling method		
 Design of piles of wall elements to carry Specified Loadings 		
4. Design of thermal loops to provide specified thermal loading		

Table 3.1: Modifications to ICE SPERW Table C1.1 to include the thermal loop design

Section 3.2 - Contractual responsibilities

ARUP

----- Possible non-contractual links

Section 3.2 - Design process responsibilities Engineer design

ARUP

Section 5.1 - Design requirements

Thermal effects complicate traditional pile design

Section 5.5 - Interface with M&E Engineers

M and E heat loads (Section 5.5)

Heating / Cooling loads –

Hourly results –

- Complex Dynamic Simulation Models
 - Daily temperature fluctuations.
 - Weakness Climate and Building occupancy changes.

Monthly results –

- Simple Simple model
- Average monthly heat loads
- Superimpose daily cycles
 - Worst winter heating and summer cooling peak periods

Section 5.7 - Interface with GSHP designer (Appendix A)

Assessment of the hotest pile

Maximum expansion and friction mobilised on pile

Assessment of the coldest pile

- Maximum contraction of pile
- No freezing at pile soil interface
- Circulation fluid Single piles or series of piles.

Section 5.7.3 Ground must not freeze

- 1. Ensure heat pump inlet/outlet temperature above zero (tolerance of 2 degrees C)
- 2. Or if inlet/outlet temperature allowed to be sub-zero for a short time then check piles give sufficient thermal buffer

Use Loop model for long term ground temperatures

Section 5.6 - Interface with pile designer

Normal pile design considerations

Ultimate LS

- Stratigraphy and soil properties
- Shear / radial stresses
- End bearing

Serviceability LS

- Pile settlement
- Differential settlement
- Concrete stress
- Negative skin friction

Additional thermal pile design considerations

ULS (Appendix C)

 Soil strength properties considering heating and cooling effects

SLS (Appendix E)

- Axial and radial pile expansion / contraction / fixity
- Thermally induced axial stresses
- Cyclic effects of thermal loading
- Temperature at soil-pile interface including daily / seasonal variations

ARUP

Section 5.6 - Ultimate Limit State – Soils (Appendix C)

Effects of heating soil

- Strength and stiffness reduces from reduction in preconsolidation pressure (quasi-creep effect)
- Consolidation regains the strength
- Over Consolidated soils less effect
- Undrained
 - Excess pore pressures

Drained

 Consolidation – regains soil strength (increased strength when cooled)

Section 5.6 - Serviceability Limit State - stresses (Appendix E)

- Thermal pile expansion is similar to -ve skin friction
 - Consider settlements
 - Negative skin friction design Poulos, (2008)
- Pile head fixity increases thermal stresses
- Thermally induced concrete axial stresses
 - Check concrete stress < concrete strength (q_c) / 4

$$\Delta \sigma = \alpha_{\rm T} \, {\rm x} \, \Delta {\rm T} \, {\rm x} \, {\rm E}_{\rm conc}$$

 $\Delta L = \alpha_{_{T}} \times \Delta T \times L$

Section 5.6 - Serviceability LS - settlement (Appendix F)

- Pile head fixity
 - % of thermal piles in the scheme
- Additional settlement
 - Thermal effects
 - Seasonal cyclic movement – heating / cooling

Loading cycles

Section 5.6 - Cyclic thermal effects

(Appendix E)

- Thermal cyclic loading
- Comparison with cyclic stability diagram (Poulos)

ARUP

P_c = Cyclic load P_o = Mean load P_u = Static load capacity

Thermal Expansion Effects – Soil and Water

Thermal properties of soil:

- Soil Linear expansion coefficient = 1.17×10^{-5} (volumetric = 3.5×10^{-5})
- Water expansion coefficient according to the curve shown.
 - **Blue** curve is α_w vs T
 - Red curve is the LS-DYNA input which is $n\alpha_w$ vs T
 - Porosity (n) = 0.4
- Specific heat capacity = 2000kJ/kgK
- Conductivity = 1.8W/mK

Water expands more than soil at high temperatures - hence water pressure change

ARUP

Temperature Change in Soil

Pore Pressure Change – (Undrained)

Model: /data3/rsturt/ENERGY_PILES/LAMBETH_JAN2012/Aw_CURVE_SLIP/Lambeth_12_AwCur.key

Permeability Effect End of Cooling

Pore pressure (kPa), relative to initial stress state.
Positive numbers - pore pressure has increased (more compressive) relative to initial stress state

LS-Dyna Conclusions

- Temperature changes in soil well modelled
- Relative expansion of soil skeleton / water is significant
- Large pore pressure changes in soil
 - Could reduce undrained shear strength
- Consolidation occurs rapidly
 - Soil regains strength ULS capacity of pile increases.
- Effect of soil expansion on axial load in pile
- Gravel layer (Lambeth College) hard to model

Section 6.4 - Pile thermal response test Shell HQ, London

- TRT borehole converted to pile.
- Instrumented.
- Strain and soil properties
- Pile and soil thermal conductivity

VW strain gauges 26m VW piezometer & thermocouples VW strain gauges VW strain gauges VW strain gauges

Appendices and Further Work

Appendices summarise current knowledge and where further work is needed

Further work

- Soil and concrete thermal conductivity lab tests
- Thermal response test extended to piles
 - Soil behaviour THM models
 - Mobilised shaft friction
 - SLS increased concrete stresses with higher temperature.
- Pipe tests
 - Scratch resistance effect of concrete surround
 - Leakage tests effect of concrete surround

Conclusions

- Thermal Piles are established in UK but few designers / contractors.
- Thermal Pile Standard provides a framework
 - Based on Vertical Borehole Standard
 - Main text Specification
 - Appendices Guidance and current state of art
- Responsibilities Design and Contract linked with SPERW
- Design Interfaces M&E, GSHP, Pile Designer
- Geotechnical design developing soil properties & THM models

Thank you for your attention

Any questions?

