

Heat Pump Field Trials and Implications for Design

GSHPA 26th June 2012

Chris Laughton Managing Director The Solar Design Company

Contents

- German Fraunhofer trials 2011
- Comparison with UK Heat Pump trials
- EST: Phase One 2010 (re-analysed 2012)
- Are these two studies fairly compared?
- Actions taken in each country?
- Implications for design?

German subsidies

German regulations

HERSTELLER	ТҮР	СОР	NENNWÄRME-	PRÜFNORM	TEMPERATUR-
			LEISTUNG		DIFFERENZ
		[bei B0 / W35]	[bei B0 / W35]		[bei B0 / W35]
AEG Markenvertrieb EHT Haustechnik	WPF 10	4,50 (4,3)	9,90 kW	EN 255 (EN 14511)	9,9 K (5,0 K)
Alpha-InnoTec GmbH	KHZ-SW 60(K)/300	4,40	5,70 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	KHZ-SW 70(K)/300	4,40	6,90 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	KHZ-SW 60(K)/400	4,40	5,70 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	KHZ-SW 70(K)/400	4,40	6,90 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	KHZ-SW 80(K)/400	4,37	9,00 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	KHZ-SW 100(K)/400	4,60	10,20 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	SWC 60 (H/K)	4,40	5,70 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	SWC 70H (H/K)	4,40	6,90 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	SWC 80H (H/K)	4,37	9,00 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	SWC 100 (H/K)	4,60	10,20 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	SWC 120 (H/K)	4,50	11,70 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	SWC 140 (H/K)	4,41	14,21 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	SWC 170 (H/K)	4,60	16,70 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	SWC 230 (H/K)	4,30	22,10 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	SWP 371	4,79	37,18 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	SWP 451	4,79	45,03 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	SWP 581	4,77	57,56 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	SWP 691	4,65	68,48 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	WZS 61 (H/K)	4,60	6,00 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	WZS 81 (H/K)	4,47	7,49 kW	EN 14511	5,0 K
Alpha-InnoTec GmbH	WZS 101 (H/K)	4,70	9,60 kW	EN 14511	5,0 K
Arwego e.K.	WP11	4,50	11,20 kW	EN 14511	5,0 K

Comparison of heat pump trials

Heat Pump Efficiency

Analysis and Evaluation of Heat Pump Efficiency in Real-life Conditions

Getting warmer: a field trial of heat pumps

The Energy Saving Trust

energy saving trust

Fair comparison?

Fraunhofer sample:

"[...] mainly <u>new</u> energy efficient residential buildings"

Mean heating demand of 72 kWh/m²/a.

EST Phase One sample:

"[...] <u>representative sample</u> of air and ground source heat pump installations in a variety of property types, focussing primarily on <u>retrofit</u> installations"

Reports' recommendations

Fraunhofer	EST phase one			
Modest design tweaks:	Fundamental issues:			
 Ground collector primary pump sizing Comments on use of buffer tanks Poorly performing combined thermal storage 	 Heat pump under-sizing Ground collector under- sizing 			

The Solar Design Company

Fraunhofer – software (GeoT*SOL)	EST – Manual calculation		
Simulation design software (Hourly)	MIS 3005 manual calculation (revised)		
Hourly climate data files	Annual totals / Regional climate		
Iterative error reporting	No feedback to incorrect calculations		
System temperature predictions	Not explicitly provided		
Manufacturers' 7 test points to EN 14511 for individual heat pumps	Utilises single COP figure from Heat Emitter guide		

Software verification

Software verification

Implications for design: Ground collector sizing

Software simulation tools mitigate:

- Under sizing Min 0°C thermal transfer fluid, extracting more heat than can be replenished. (MIS 4.2.13)
- Over sizing (increased cost of installation)
- Manual calculation errors
- Manufacturer data entry errors

The Solar Design Company 0845 519 7914 www.solardesign.co.uk

