School of Engineering and Sustainable Development
Institute of Energy and Sustainable Development

PERFORMANCE MONITORING OF A LARGE UNIVERSITY GSHP SYSTEM

Dr Simon Rees Selvaraj Naicker

THE HUGH ASTON BUILDING

- A multi-use building (15,607 m²⁾
- Monitored since opening in Jan 2010
- GSHP system provides all AHU and FCU cooling (360 kW peak) and all underfloor heating (330 kW peak capacity)
- Has Four Water Furnace 2-stage reversible heat pumps
- 56 x 100m deep borehole heat exchangers, 125mm diameter.
 30 l/s peak flow

SYSTEM SCHEMATIC

BOREHOLE ARRAY DESIGN

19 + 37 arrays

THE HEAT PUMP INSTALLATION

2-stage design with scroll compressors and plate heat exchangers. Any HP can be used for heating or cooling

THE HEAT PUMP INSTALLATION

MONITORING

- Aims
 - Performance analysis
 - Reference data sets for model development
- Measurements
 - Ground TRT test analysis
 - Heat pump electrical demand (sub-meters)
 - Ground loop and heating/cooling temperatures and flow rates at 1 minute intervals
 - Borehole temperatures
 - Flow and source/load temperatures for one heat pump
 - BMS Data: compressor operation
- Careful calibration means SPF calculated to +/- 2.7%

MONITORING OUTPUTS

- Seasonal performance factors (various timescales): SPF1, SPF2, SPF4 for heating/cooling modes
- Ground loop temperature and flow reference data
- Analysis: reasons for heat pump and overall system good/poor performance

GROUND HEAT EXCHANGER PERFORMANCE

MONTHLY HEAT BALANCES

SYSTEM EFFICIENCIES

■ May -2010 to April -2011 ■ May -2011 to April -2012 ■ Feb -2010 to July -2012

- Seasonal performance Factors:
 - SPF1 is heat pump alone
 - SPF2 includes the ground loop pump demand
 - SPF 4 includes the heating/cooling header pumps
- RES Directive requires SPFH2 > 2.5

Year (Season)	SPF _{H1}	SPF _{C1}	SPF ₁	SPF ₂	SPF ₄
May -2010 to April -2011	2.89	3.99	3.31	2.69	2.22
May -2011 to April -2012	3.55	3.87	3.67	3.16	2.61
Feb -2010 to July -2012	3.19	4.06	3.54	2.97	2.49

SYSTEM EFFICIENCIES

Questions:

- Are the heat pumps performing as the manufacturers stated?
- What are the main contributors to differences between heat pump and overall system performance?
- What could be done to improve performance?

Approach:

- Compare individual heat pump performance and catalogue data
- Evaluate circulating pump energies
- Examine dynamic operation and control

HEAT PUMP EFFICIENCIES

Heat pump performance varies according to flow rates and inlet temperatures at both load and source-side heat exchangers. Also glycol properties.

Heat Pump Performance

- Most catalogue data shows performance with water.
 20% polypropylene glycol reduces heat transfer by 9% for cooling and 4% for heating in our case.
- We can construct a 'curve fit' model using the corrected catalogue data and predict outputs based on measured fluid temperatures and flow rates.

$$\frac{Q_L}{Q_{L,ref}} = A1 + A2 \left[\frac{T_{L,in}}{T_{ref}} \right] + A3 \left[\frac{T_{S,in}}{T_{ref}} \right] + A4 \left[\frac{V_L}{V_{L,ref}} \right] + A5 \left[\frac{V_S}{V_{S,ref}} \right]$$

$$\frac{P}{P_{ref}} = B1 + B2 \left[\frac{T_{L,in}}{T_{ref}} \right] + B3 \left[\frac{T_{S,in}}{T_{ref}} \right] + B4 \left[\frac{V_L}{V_{L,ref}} \right] + B5 \left[\frac{V_S}{V_{S,ref}} \right]$$

$$y = 1x + 3E \cdot 06$$

$$R^2 = 0.9953$$

$$y = 100 \quad 150 \quad 200 \quad 250$$
Simulated Cooling Capacity (kw)
$$y = 1 \times 3E \cdot 06 \quad 100 \quad 150 \quad 200 \quad 250 \quad 300$$
Simulated Heat Rejection (kW)

HEAT PUMP PERFORMANCE

DYNAMIC OPERATION

Only one compressor stage is needed for much of the time. On/off control leads to short cycle times.

DYNAMIC OPERATION

CIRCULATING PUMP OPERATION

- Pump sizes are large relative to compressor sizes
- Pumps also operate unnecessarily valve, flow switch and control faults

CIRCULATING PUMP ENERGY DEMANDS

Pump demands have a big effect on SPF₂ and SPF₄

Monthly Pump to Compressor Power Ratio Vs Monthly SPF2, SPF4

IMPROVING PERFORMANCE

- Cycle times would be improved by
 - Smaller lead machine
 - Variable compressor speed
 - Buffer tanks
- Lift could be reduced by heating temperature tuning/reduction
- Pump energy demands could be reduced by:
 - Better hydraulic design
 - More robust control (fault detection/correction)
 - Reduced start-up/shut-down running
 - Ground loop demand control

CONCLUSIONS

- Overall performance satisfactory
- Good ground heat exchanger performance
- Potential improvement:
 - Longer cycle times
 - More resilient control
 - Heating temperature optimization
 - Lower glycol levels
- General lessons:
 - Pump energy, heating temperatures and controls are issues limiting efficiency: as in domestic systems
 - Short timescale dynamics are important
 - Better control integration (design/contract stages) and post installation care are needed

