

Thermal testing of soils

Recent developments at Imperial College

GSHPA Fifth Technical Seminar26 November 2014, De Montfort University, LeicesterDavid M. G. Taborda

© Imperial College London

Contents

- Background
- Research Approach
- Numerical Research
- Experimental Research
- Summary & Conclusions

Background

- Research at the Geotechnics Section at Imperial College covers a wide range of topics (offshore geotechnics, tunnelling, excavations, embankments, advanced soil testing, computational geomechanics, etc.)
- Energy Geotechnics was established recently, including ground-source energy systems (2012) and nuclear waste disposal (2013)
- Interfaces with other areas of the Civil Engineering
 Department (subsurface hydrology, energy systems, materials, etc.) and College through the Energy Futures Lab

Research Approach

Research Approach

Computational Research

Upgrade of Finite Element Code ICFEP

- Developed in-house over the last 30 years
- Finite Element code for the nonlinear analysis of Geotechnical structures under static or dynamic loads
- Hydro-mechanical coupling
- Capable of modelling saturated and unsaturated geomaterials
- Implementation of heat flow algorithm and THM coupling
- Development of thermo-plastic mechanical models for geomaterials
- Simulation of open loop systems and heat storage schemes
- Analysis and design of geotechnical structures under non-isothermal conditions

Cui (2014); Gawecka (2016)

FE Mesh (1908 elements)

Hydraulic conditions (k = 0.05 m/day)

Prescribed temperatures \rightarrow initial: 10°C; injection: 20°C

T=10 °C $\overset{\circ}{\circ}$ T = 10T=10 °C T=20 °C

i=0.01 m/m t=2 days

i=0.01 m/m t=6 days

i=0.01 m/m t=10 days

Gawecka (2014); Cui et al. (2015)

i=0.01 m/m t=14.5 days

Gawecka (2014); Cui et al. (2015)

i=0.01 t=21 days

Gawecka (2014); Cui et al. (2015)

Simulation of thermo-active piles

Temperature-controlled triaxial apparatus Mk1

Main characteristics

- sample diameter 38 mm or 50 mm
- strain-controlled loading
- confining pressure up to 800 kPa
- heating elements at both extremities of sample
- maximum working temperature of 85 deg C

Temperature-controlled triaxial apparatus Mk1

Temperature-controlled triaxial apparatus Mk1

Calonge Martinez (2013)

Finite-element analysis:

- Understand the thermal performance of the apparatus
- 2D axisymmetric and 3D analyses
- Simulation of convective heat transfer

$$q = h \cdot (T - T_{\infty})$$

- Cell filled with air or water
- Different tests:
 - o Lower heaters only
 - o Upper heaters only
 - o Both sets of heaters

CONTOUR LEVELS 0.200E2 0.220E2 0.240E2 0.260E2 0.280E2 0.300E2 0.320E2 0.340E2 0.360E2 0 380E2 0.400E2 0.420E2 0.440E2 0.460E2 0 480E2 0 500E2 0.520E2 0.540E2 0.560E2 0.580E2 0.600E2 0.620E2 0.640E2 0.660E2 0 700E2

Gawecka (2014); Calonge Martinez et al. (2015)

Simulation of a test with lower heaters only

Laboratory testing and finite-element analysis:

- Demonstrate the uniformity of temperature within the sample
- Three temperature sensors within the samples
- Different tests:
 - o No cell
 - o Cell filled with air
 - o Cell filled with water
 - Cell filled with water + insulation
- Good agreement with FE analyses
- Differences between sensors in the sample limited to 0.2 deg C

Temperature-controlled triaxial apparatus Mk2

Main characteristics

- sample diameter 50 mm or 100 mm
- strain-controlled loading
- confining pressure up to 5 MPa
- working temperatures from 5 deg C to 85 deg C

→ PVC Wall

Thermal & Hydraulic conductivity cell

Main characteristics

- sample diameter 50 mm or 100 mm
- determine thermal conductivity under stresses up to 800 kPa
 - o divided-bar configuration (two materials)
 - o thermal flux sensor
- determine hydraulic conductivity under temperatures between 5 deg C and 85 deg C and stresses up to 5 MPa

Three possible configurations for the apparatus

Thermal & Hydraulic conductivity cell

Configuration I – Thermal conductivity with heat flux sensor

Thermal & Hydraulic conductivity cell

Configuration II – Thermal conductivity with additional material

Thermal & Hydraulic conductivity cell Configuration III – Hydraulic conductivity

Temperature-controlled oedometer

Main characteristics
sample diameter – 70 mm
strain-controlled loading
working temperatures from 5 deg C to 85 deg C
Stiff ring

Direct measurements of thermal conductivity & heat capacity

Thermal conductivity sensor (manufactured by East 30 Sensors)

Thermal conductivity & heat capacity sensor (manufactured by East 30 Sensors)

Summary & Conclusions

- Integrated approach to research on ground source energy systems with experimental characterisation, computational modelling and field work
- Numerical code ICFEP upgraded to deal with Thermo-Hydro-Mechanical problems (e.g. open-loops, thermo-active piles)
- Experimental facilities include two temperature-controlled triaxial apparatuses, one conductivity cell and one oedometer
- Design of experimental equipment based on FE simulations

Thermal testing of soils

Recent developments at Imperial College

GSHPA Autumn Seminar 201426 November 2014, De Montfort University, LeicesterDavid M. G. Taborda

© Imperial College London