

Large Water Source Heat Pumps – The Swedish Experience

Jan-Erik Nowacki

SKVP

KTH

Nowab

NeoEnergy

All UK enquiries to: Nic Wincott:

01223 781940 or 07836 661551

nic.wincott@neoenergy.co.uk

Sediment heat exchanger

Skåvsjöholm outside Stockholm 17 km of pipe buried in the sea bed Weights counteract ice buoyancy ~40 parallel circuits

Heating power 300 kW
Cooling capacity 200 kW
Built 1994 still works fine
Hotel 91 guestrooms + 16 lectureCOP 3→4

Investment around 300 000 € (indexed to 2014) Utilization time 3000 h/year

Saved energy 200 x 3000 = 600 000 kWh/year Alternative cost 0.1 €/kWh (Oil = 0,15...) Saved money 60 000 €/year

Payback period 300 000 / 60 000 = 5 years

Vaasa Finland drilled collector

into the sediments

Warm sediment 14 °C brine in, every autumn

No "anchor"-risk

Special pipes Refla Demands drilling

Distribution of brine to the individual houses

1.2 GWh, 400 kW 9 kW → 22 kW/HP

Sea water - loads the bedrock summertime

Näsbypark Castle

Näsby park Castle

Bedrock heat storage loaded from the sea

Some larger heat pumps

Ropsten 250 MW heat – has delivered 60% of the heat to Stockholm COP 3

Also used for district cooling

Ropsten - some more data (2012)

- Built around 1987 totally depreciated by now
- Two stages with a medium pressure tank
- Can produce 80 °C forward temperature
- Can use +2 °C sea water while heating (two intakes surface/bottom)
- 4 x 27 MW R22 heat pumps turbo (Sultzer→Axima→Cofely)
 COP = 3.21, leaked 360 kg = 0.5%
- 2 x 24 MW R134a (retrofitted as above)
 COP = 2.86, leaked 0 kg
- 4 x 25 MW R134a ABB turbo on barge (→ Siemens)
 COP = 2.68, leaked 1490 kg = 1.7% also for district cooling
- Direct cooling from sea water 74 MW
- Excellent business... marginally ~ 5 times economic gain

Hammarby sewage water heat pump

Seven HP, 225 MW heat totally Sewage from 700 000 person equivalents COP 3.5 produces 1.24 TWh heat/year Utilisation 5500 h/year Also used for district cooling

Heat taken up from various sources to district heating networks (2007)

Delivered heat to district heating networks from large heat pumps

Some methods to exchange heat

Common Shell and Tube heat

exchangers

The **Taprogge** cleaning system

http://www.taprogge.de/products-and-services/in-ta-sR/cleaning-balls/index.htm

The AHTT cleaning system 4-way reversing valve and:

http://www.heattransfer.com.au/?page_id=477

A new method.....

Should be able to use 0 °C sea water

2014-05-20 16.50.46.mov