Soil Thermal Conductivity Testing: When and How?

Daniel Bernstein - President

Gaia Geothermal, LLC

www.gaiageo.com www.precisiongeothermal.com

About Gaia Geothermal, LLC

- USA-based software firm that develops geothermal loopfield design and TC/TRT analysis tools
- In business for over a decade
- Customers in approx. 60 countries
- www.gaiageo.com

Class Outline

- First things first: Is a geo system justified?
- Is a TC test necessary?
- What does a TC test look like in the field?
- TC test data analysis and report generation
- Typical errors and bad data sets

Learning Objectives

In today's presentation you will learn:

- A step-by-step process for determining if geo is a good fit for a project
- A step-by-step process for determining when it is important to conduct a TC test
- What a field TC test looks/feels like
- What good/bad TC test data look like

Is a Geo System Justified?

- Before you conduct a TC test it is important to first determine if a geothermal system is the right technology for the project
- If a geo system is a good solution a TC test is not always necessary
- There is a logical, analytic framework for determining:
 - is a geo system justified?
 - is a TC test warranted?

Is a Geo System Justified: An Example

Is a Geo System Justified?

Copyright © 2011

Is a Geo System Justified?

Gaia Geothermal

Copyright © 2011

Is a Geo System Justified: Energy

Monthly Energy Output*

Daylight contours

Climate Understanding

Is a Geo System Justified?

Copyright © 2011

Is a Geo System Justified?

Copyright © 2011

Is a Geo System Justified: The Site

Is A Geo System Justified?

Copyright © 2011

Geothermal

Is a Geo System Justified: Payback?

Results Geothermal Conventional Estimated Cost Results Calculate 15.0 • years C *LifeCycle *Annual *Financial Metrics	I Utilities Other Import Manual	Costs Incentives
Estimated Cost Results Calculate 15.0 years *LifeCycle *Annual *Financial Metrics	Import Manual	Alternate 1 4
Calculate 15.0 • years • *LifeCycle *Annual *	Import Manual	Alternate 1 🚺
*LifeCycle *Annual *	*Analysis	
*Financial Metrics		
	Geothermal	Air-cooled Chiller Boiler
Annual Total Savings	8,056.81	(\$)
*NPV Total Savings (15 years)	71,882.15	(\$)
*Annual CO2 Reduction	15.94	tonnes
*Total CO2 Reduction (15 years)	184.29	tonnes
Simple Payback	5.6	years
*IRR	9.4	%
*Annual RHI	926.94	(\$)
*NPV Total RHI	10,718.31	(\$)

Using GLD, we can conduct a quick and comprehensive lifecycle analysis.

The Geo system payback looks good and the client decides to move forward with geo. Now, it is time to determine whether or not to conduct a TC test.

Is a TC Test Justified?

Is a TC Test Justified?

- Before you conduct a TC test it is important to first determine if it is necessary
- First estimate the conductivity
- Second, conduct a best case/worst case sensitivity analysis
- Third, compare the best case/worst case installation costs
- Determine whether or not to perform a TC test

Is a TC Test Justified: TC Estimates

Estimate the TC values from drill logs, data tables, geological data,

etc.

Minnesota Unique Well No. 782101 Quad Hopkins Quad ID 1048			W	MINNESOTA DEPARTMENT O IELL AND BORING Minnesota Statutes Chapt	F HEALTH RECORD ler 103/	Entry Date 12/14/2010 Update Date 03/07/2010 Received Date 02/18/2010	0 1 1
Well Name DNR OB 27059 Township Range Dir Section Subsections Elevation	972 ft.			Well Depth	Depth Completed	Date Well Completed	
	7.5 minute to	pograpł	nic	953 ft.	903 ft.	01/20/2011	
118 22 W 32 ACAAAA Elevation Method	map (+/- 5 fee	et)		Drilling Method Dual Rotary			
				Drilling Fluid Water	Well Hydrofractured From Ft. to Ft.	? 🗌 Yes ✔ No	
Geological Material Color	Hardness	From	To				
SAND BROWN	SOFT	0	1	Use Monitor Well			
GRAVEL/CLAY BROWN	SOFT	1	9				_
GRAVEL/SAND BROWN	SOFT	9	33				
FINE SILTY SAND BROWN	SOFT	33	68	Contine Turne, Sheet (black out	In the second	dad Daine Share? 📝 Yes 🔲	
SAND, GRAVEL, CLAY, ROCKS BROWN	SOFT	08	30	Casing Type Steel (black of	low carbon) Joint Wei	ded Drive dide: v res	
CLAV & GRAVEL ROOKS BROWN	SOFT	120	123	NO ADOVE/BEIOW IT.			
CLAY & GRAVEL GRAV	SOFT	155	170				
MEDIUM SAND BROWN	SOFT	170	182		W-1-64	Hele Dismeter	
GRAVEL GRAY	SOFT	182	192	Casing Diameter	weight	Hole Diameter	
SHALE BRN/GF	IN SOFT	192	197	10 in. to 192 ft.	40.48 lbs./ft.	10.75 in. to 235 ft.	
SANDSTONE GRAY	SOFT	197	210	A 10 A 000 C	10.79 lbc /#	10 in to 953 #	
SANDSTONE GRY/BR	N SOFT	210	226	4 in. to 855 ft.	10.70 103./11.	10 m. to 555 ft.	
SANDSTONE & SHALE BRN/RE	D SOFT	226	229				
SANDSTONE & SHALE VARIED	MED-HRD	229	235				
LIMESTONE TAN/PM	K MED-HRD	235	375				
SANDSTONE WHITE	MEDIUM	375	390				
SANDSTONE WHT/PI	IK MEDIUM	390	407				
SANDSTONE & SHALE LAYERS VARIED	MEDIUM	407	425				_
SANDSTONE WHT/PI	IK MEDIUM	425	460	Open Hole from 855 ft. to	953 ft.		
SANDSTONE & SHALE GRY/GI	RN MEDIUM	460	470				
SANDSTONE & SHALE TAN/GR	N MEDIUM	470	510	Screen NO Make Type			

Enter the best case/worst case TC values into design software and calculate drilling requirements.

🕇 Borehole Design Project - GeoDrilling1 📃 🖻 🎫	T Borehole Design Project #2
Results Fluid Soil U-Tube Pattern Extra kW Information	Results Fluid Soil U-Tube Pattern Extra kW Information
Undisturbed Ground Temperature	Undisturbed Ground Temperature
Ground Temperature: 16.7 °C	Ground Temperature: 16.7 °C
Soil Thermal Properties	Soil Thermal Properties
View Layer Calculator	View Layer Calculator
Thermal Conductivity: 1.90 W/(m)K)	Thermal Conductivity: 2.77 W/(m)K)
Thermal Diffusivity: 0.070 m^2/day	Thermal Diffusivity: 0.076 m^2/day
Diffusivity Calculator Check Soil Tables	Diffusivity Calculator Check Soil Tables
Modeling Time Period	Modeling Time Period
Prediction Time: 15.0 years	Prediction Time: 15.0 years
	2

205,200 - 164,952 = 40,248

Finance Module - GeoDrilling1			S Finance Module - GeoDrilling1		
6 6 4			2850		
esults Geothermal Conventio	nal Utilities Other	Costs Incentives	Results Geothermal Conver	ntional Utilities Other C	osts In
Estimated Cost Results			Estimated Cost Results		
Calculate 15.0 years	・ Import が の Manual	Alternate 1 4	Calculate 15.0 years	Import A C Manual	lternate
*LifeCycle *Annual	*Analysis		*LifeCycle *Annua	l *Analysis	
*Variable Costs (\$)	Geothermal	Air-cooled Chiller Boiler	*Variable Costs (\$)	Geothermal	Air-coo
Energy	100,594.87	0.00	Energy	100,594.87	
CO2 Emissions	9,880.88	0.00	CO2 Emissions	9,880.88	
Water	0.00	0.00	Water	0.00	
Maintenance	0.00	0.00	Maintenance	0.00	
Mechanical Room Lease	0.00	0.00	Mechanical Room Lease	0.00	
*Fixed Costs (\$)			*Fixed Costs (\$)		
Installation: *Subsurface	205,200.00		Installation: *Subsurface	164,952.00	
Installation: Equipment	0.00	0.00	Installation: Equipment	0.00	
Installation: *Controls	0.00	0.00	Installation: *Controls	0.00	
*Tax Credits	0.00		*Tax Credits	0.00	
*Depreciation	0.00	0.00	*Depreciation	0.00	
Equipment: *Replacement	0.00	0.00	Equipment: *Replacement	0.00	
Salvage			Salvage		
Lifecycle Total	315,675.74	0.00	Lifecycle Total	275,427.74	

Alternate 1 ()

Air-cooled Chiller

Boiler

0.00

0.00

0.00

0.00

0.00

-

0.00

0.00

0.00

0.00

0.00

-

Maximum loopfield cost difference: TC Test Cost: Difference:

\$40,248 \$10,000 \$30,248

Perform a TC test? Absolutely! Why? You might save your clients \$30,000!

What a Field Test Looks Like: Tools

Native Ground Temperature: An Aside

• Direct measurement

- Insert temperature measuring device into loop and record temperature every X meters and calculate mean
- Circulating temperature measurement
 - Set logging interval to two seconds and record circulating data for about ten minutes
 - Watch for pump heat

Purging Air From The System: An Aside

- Use bypass valve assembly
- Critical to test operation
- Critical to stable data collection
- Improper purging can cause damage to test equipment

- Verify all sensors are connected and communicating with the logger
- Start circulating pump and engage the heating elements
 - You want to obtain ~ 50- 75 Watts per vertical meter of bore
- Verify proper readings
- Secure and lock unit

- Check that all data is consistent before shutting down test
- Transfer data from logger into GLD or other software tool
- Analyze data set

🚺 Thermal Conductivity Calculation Pro	ject	
Project File	e: None e: TC_Test	.csv
Results Bore Flow Diffusivity I	nformatio	n D
Calculate Save Calculate	ed Graph	Data
Start: 12.0 hr	End:	40.0 hr
Thermal Conductivity	2.59	W/(m*K)
Average Heat Flux Average Power	61.6 5631.1	W/m Watts
BH Thermal Resist (BTR) Thermal Diffusivity	0.17 0.000	m*K/W m^2/day
Average Flow Rate	0.46	L/s
Data Quality		Threshold
Power Standard Deviation	n +/-	1.50 %
 Power variation Temperature 	+/-	10.00 %
Flow Rate	+/-	1.00 %
 Slope Stability Water Flow Test 	+/- +/-	25.00 % 20.00 %

Thermal Conductivity Calculation Proje	ct	
Project File:	None TC_Test	.csv
Results Bore Flow Diffusivity Inf	ormatio	n
Calculate Save Calculated	d Graph	Data
Calculation Interval		
Start: 12.0 hr	End:	40.0 hr
Thermal Conductivity Slope	2.59	W/(m*K)
Average Heat Flux Average Power 5	61.6 631.1	W/m Watts
BH Thermal Resist (BTR)	0.17	m*K/W
Average Flow Rate	0.46	L/s
Data Quality		Threshold
Power Standard Deviation	+/- +/-	1.50 %
Temperature Flow Rate	+/- +/-	5.00 %
 ✓ Slope Stability ✓ Water Flow Test 	+/- +/-	25.00 % 20.00 %

Good Data

Bad Data

Ugly Data

Ugly Data?

Ugly Data?

Ugly Data?

Thank You!

Daniel Bernstein – President bernstein@gaiageo.com

Gaia Geothermal, LLC

www.gaiageo.com www.precisiongeothermal.com

Thermal Conductivity Test Equipment

Test Equipment

