

Selecting microgeneration technologies: a process and training programme to increase the uptake of renewable technologies

David Matthews, Chief Executive Ground Source Heat Pump Association

8th June 2011, GS Live, Peterborough

Country	Number installed	Date started
Austria	23 000	
Canada	36 000	
Germany	40 000	1996
Sweden	200 000	1980
Switzerland	25 000	1980
UK	3 000	
USA	600 000	1996

• One in 4 to 5 of Swedish homes use a GSHP & Mature markets have codes of practice, standards & training

12% Renewable Heat; 29% large scale electricity,

2% small scale electricity, 10% transport

Restrictions:

- Inconsistent Government policy
- Mixed results from HP field trials

Drivers:

- Renewable Heat Incentive
- Government belief Professor MacKay

Professionalism:

- MCS
- QCF units

Heat meter is a flow meter with the temperature difference between flow and return temperature sensors. They have to be Class 2 for RHI.

GSHP Underfloor Base load

Comfortable

Socks on floor

BoilerRadiantRadiatorsElementAbout 30 minsInstantaneousMild hot spotsHot skinScalding radsBurns

Combustion

- Flame temperature 600 to 900 °C
- Downgrade heat to 40 to 80 °C

Heat Pump

- Collection temperature 15 to 15 °C
- Upgrade heat to 30 to 65 °C

n.b. last 2 slides indicative

Air Collector Systems:

- Noise
- Location (good air flow & connection)
- Defrost cycles
- Undersizing
- Oversizing
- Inaccurate heat loss calculation
- Poor heat distribution design or install
- Inadequate control strategy
- Commissioning, Handover & Maintenance

Ground Collector Systems:

- Undersizing
- Oversizing
- Inaccurate heat loss calculation
- Poor heat distribution design or install
- Inadequate control strategy
- Commissioning, Handover & Maintenance
- Inadequate collector design
- Inadequate collector install

Heat Loss of 30 watts per square metre as taken from heat loss calculations per BSEN12831

Efficiency Rating	Flow Temperature To Heating System °C	Return Water Temp °C	GSHP Likely SPF	ASHP Likely SPF	Solid Floor UFH Screeded PS= Max Pipe Spacing	Wood Floor UFH Alu-panel PS = Max Pipe Spacing	Fan Coil Unit (correction factor)	Fan Convector (correction factor)	F an A ssisted Radiator (correction factor)	Standard Radiator (correction factor)
Highest Efficiency,	35	30	4.3	3.6	PS≤200	PS≤150	0.16	0.25	0.25	0.12
Lowest Running Cost	40	35	4.1	3.4	PS≤300	PS≤200	0.25	0.35	0.35	0.21
+	45	40	3.7	3.0	PS≤300	PS≤300	0.34	0.45	0.45	0.30
	50	45	3.4	2.7	PS≤300	PS≤300	0.42	0.55	0.55	0.41
Lowest Efficiency,	55	50	3.1	2.4	PS≤300	PS≤300	0.51	0.65	0.65	0.51
Highest Cost	60	55	2.8	2.1	PS≤300	PS≤300	0.60	0.75	0.75	0.63

Heat Loss of 50 watts per square metre as taken from heat loss calculations per BSEN12831

Efficiency Rating	Flow Temperature To Heating System °C	Return Water Temp °C	GSHP Likely SPF	ASHP Likely SPF	Solid Floor UFH Screeded PS= Max Pipe Spacing	Wood Floor UFH Alu-panel PS = Max Pipe Spacing	Fan Coil Unit (correction factor)	Fan Convector (correction factor)	F an A ssisted Radiator (correction factor)	Standard Radiator (correction factor)
Highest Efficiency,	35	30	4.3	3.6	PS≤100		0.16	0.25	0.25	0.12
Lowest Running Cost	40	35	4.1	3.4	PS≤150		0.25	0.35	0.35	0.21
+	45	40	3.7	3.0	PS≤300	PS≤150	0.34	0.45	0.45	0.30
	50	45	3.4	2.7	PS≤300	PS≤200	0.42	0.55	0.55	0.41
Lowest Efficiency,	55	50	3.1	2.4	PS≤300	PS≤200	0.51	0.65	0.65	0.51
Highest Cost	60	55	2.8	2.1	PS≤300	PS≤300	0.60	0.75	0.75	0.63

Heat Loss of 80 watts per square metre as taken from heat loss calculations per BSEN12831

Efficiency Rating	Flow Temperature To Heating System °C	Return Water Temp °C	GSHP Likely SPF	ASHP Likely SPF	Solid Floor UFH Screeded PS= Max Pipe Spacing	Wood Floor UFH Alu-panel PS = Max Pipe Spacing	Fan Coil Unit (correction factor)	Fan Convector (correction factor)	F an Assisted Radiator (correction factor)	Standard Radiator (correction factor)
Highest Efficiency,	35	30	4.3	3.6			0.16	0.25	0.25	0.12
Lowest Running Cost	40	35	4.1	3.4			0.25	0.35	0.35	0.21
+	45	40	3.7	3.0	PS≤100		0.34	0.45	0.45	0.30
	50	45	3.4	2.7	PS≤150		0.42	0.55	0.55	0.41
Lowest Efficiency,	55	50	3.1	2.4	PS≤200	PS≤100	0.51	0.65	0.65	0.51
Highest Cost	60	55	2.8	2.1	PS≤300	PS≤150	0.60	0.75	0.75	0.63

Under development – distribution temp guide

Turbulent

Laminar

indificer and lengths of the denotes will depend on the exact load of the system and the properties of the soil. These factors are ESSENTIAL for the proper working of your geothermal installation.

GSHP it's expensive to put right

Some Ground Collector Faults:

- Not enough surface area/depth or proximity
- Overlapping pipework
- Poor materials (pipes, antifreeze etc)
- Poor hydraulic design (massive pumps)
- Poor backfilling or grouting
- Poor drilling/trenching practice
- No capping off
- Poor purging and filling
- Inadequate joints

Water Source – Open Loop

- Aquifer required
- Need for abstraction licences
- Need to reject abstracted water

<u>Green Deal</u> October 2012 - Loan of £6000 to spend on Energy interventions

Besides **Solid Wall Insulation**, all measures must payback

- **RHI payback** (besides ASHP on off-gas grid?) doesn't currently payback
- Green Deal assessed by DEA or HI via rdSAP
- How do we train DEAs & HIs on GSHP / RH?
- How should we train **other stakeholders** e.g. architects, planning permission, etc?

Training stakeholders

Based on 4 different sections: Energy & Policy Exercise Zero Carbon Technologies

Low Carbon Heating Technologies Selection Procedures; Four Case Studies

Interesting and interactive - Team work

- 1st Exercise Share your energy knowledge
- **2nd Exercise** 4 domestic housing scenarios.

Maximise participant engagement

GSHP Evaluate, Audit, Interview **association** Insulate, Supply, Generate

Selection Principles

- External evaluation
- Internal audit
- Customer interview

Specification Processes

Insulate(Energy Efficiency)Supply(Low Carbon Heating)Generate(Renewable Electricity)

Scenarios – Case studies

Refurbished Council House Victorian Terrace House Modern Detached House Leasehold Flat

GSHP association Site Evaluation

Building Type

Age Construction

Floor area

Building Orientation

Roof pitch and direction Roof shading Noise issues? Prevailing wind Outbuildings

Size

Construction

Construction

Walls

Roof

Chimneys & flues

Windows, doors & glazing

Land

Size

Terrain

Access (drilling rigs etc)

Ground type

Rivers / Streams

Selection – Internal Audit

Metering

Gas & Electric

Location

Туре

Access for export metering

Cable/Pipe/Flue Runs

Insulation

Walls

Roof

Floors

Hot Water system

Vented/Unvented/Thermal store

Power showers

Instantaneous water heating

Heating system

Central / distributed

Gas / oil / electric / wood

Underfloor / Radiator / Storage

Controls

Appliances and Lighting

GSHP Selection – Customer **association** Interview

Budget

Occupancy

Future growth plans?

Obviously handled with due care & consideration

Refurbishment plans

Energy Efficiency (insulation, glazing, lighting, draft proofing, appliances, any others)

Renewable Energy

Appearance (e.g. flooring, look of roof etc)

Specific areas of interest

Energy Assessment Report

Energy efficiency

Double Glazing Cavity Wall Loft Insulation Low energy lighting A rated appliances Draft proofing

Renewable Electric

ΡV

WIND

HYDRO

Renewable part-load heating

DSHW Wood or Pelle

Wood or Pellet stoves

Renewable & low carbon full-loaded heating

ASHP

GSHP

Pellet Boiler

mCHP

A rated condensing boiler

Other options

Does the hot water cylinder

need replacing or relocating

Can underfloor heating be fitted

Are central heating control

adequate

Are electrical supplies adequate

Use Heat Pumps

GSHP @ 350% efficiency and 0.54 kgCO2/kWh electricity = 0.15 kgCO2/kWh

Gas Condensing @ 80% eff.* and 0.205 kgCO2/kWh gas = 0.26 kgCO2/kWh

In this case, GSHP is <u>40% CO2</u> improvement and 38% running cost saving

As national grid decarbonises, CO2 savings improve

* 80% gas condensing system efficiency is based on currently ongoing EST field trials. This figure is yet to be published and might be subject to change. However, our understanding is that it is far more accurate than stated boiler efficiency of 91%. Heat pump system efficiency of 350% equates to a realistically GSHP achievable CoP of 3.5. Costs based on 3.3 p/kWh gas and 8.9 p/kWh electricity-BSRIA and carbon figures-SAP 2005.

A well **designed**, **installed**, **commissioned and maintained** GSHP system is:

- Cheaper than Gas, Oil, Wood, Coal or Economy 7
- Has no Carbon Monoxide or flueing issues
- Easily achieves a 10% or much more RE target
- Can heat and cool the building
- Compatible with Domestic Solar Hot Water

