Assessing the performance of thermo-active geotechnical structures

David M G Taborda Imperial College London

GSHPA Technical Seminar University of Leeds, 24th May 2018

Energy Geotechnics

- Combines all geotechnical issues of energy provision:
 - i) gas hydrate sediments,
 - ii) unconventional hydrocarbons and hydraulic fracturing
 - iii) energy geostructures
 - iv) energy geostorage
 - v) high-level radioactive waste disposal
 - vi) CO2 storage
- At Imperial College, the focus has been on energy geostructures, energy geostorage and nuclear waste disposal

Energy Geotechnics

Energy Geotechnics

What are we asking?

- Thermal performance?
- Additional structural forces?
- Additional ground movements?
- Impact on adjacent structures?

How do we find out?

- Specialist temperature-controlled lab equipment
- Advanced numerical methods
- Field data for validation

Which do we need to know?

- Thermal properties
- Thermal loads
- Thermo-hydro-mechanical properties of soil

Energy Geotechnics

- Temperature-controlled triaxial equipment
- Temperature-controlled oedometers
- Strength & stiffness under temperature changes
- Thermal expansion
- Thermal pressurisation of pore water

Behaviour of a single thermo-active pile

Increase in temperature dT>0

- Pile expands when heated
- Soil restrains the deformation
- Additional axial forces are generated
- The more the soil effectively restrains the pile the larger the axial force increase
- The opposite is expected when cooling (i.e. reduction in axial force)

Numerical modelling of thermo-active piles

Initial conditions

Material behaviour

Numerical algorithms

Coupled phenomena

Numerical modelling of thermo-active piles

Initial conditions

- Stress state
- Pore water pressure profile
- Temperature field

Numerical modelling

- Transient seepage
- Hydraulic boundary conditions
- Transient heat flux (advection-diffusion)
- Thermal BC & modelling of pipes

Material behaviour

- Mechanical response
- Hydraulic properties
- Thermal properties (thermal conductivity, specific heat capacity)

Coupled phenomena

- Consolidation (HM)
- Thermal expansion (TM)
- Advection (TH)
- Temperature-induced pore water pressure (THM)

Reproduction of a field test

Lambeth College main test pile (Bourne-Webb et al., 2009)

- 23 m long pile (19 m in London Clay)
- 550 mm diameter
- Loaded mechanically to 1200 kN (FoS = 2.5)
- Pile temperatures ranged from 0 °C to 35 °C
- Heavily instrumented pile (including OFS & VWSG)
- $E = 40 \ GPa$, $\alpha_{concrete} = 8.5 \times 10^{-6} m/(mK)$
- Coupled THM modelling assuming non-linear elasticity below yield, properties obtained from literature on London Clay

- Based on the validated numerical model
- Investigate the effect of:
 - Transient phenomena
 - Thermo-mechanical response of soil (linear)
 - Thermo-mechanical response of soil (thermo-plastic)
 - Adopted boundary conditions within pile (temperature / heat flux / modelled pipe)
 - Thermal conductivity of soil
 - Permeability
 - Thermo-induced pore water pressures
- Reported in Gawecka et al. (2017) (ICE Proceedings) and in Gawecka (2017)

Exploratory studies

Reference analysis

Thermo-induced axial force (kN) -400.0 -200.0 0.0 200.0 400.0

- —Mechanical loading
- -Initial cooling (A)
- End of cooling (B)
- Initial heating (C)
- End of heating (D)

Animation of pile behaviour under temperature changes

Exploratory studies

Excess pore water pressures

Initial cooling (A) End of cooling (B)

Initial heating (C) End of heating (D)

Exploratory studies

Effect of transient phenomena

- Analysis without pwp or temperature degrees of freedom
- No transient seepage or heat flux

Modelling pipe-pile-soil interaction

- Thermal response test reported by Loveridge et al. (2014)
- 300 mm diameter pile with a length of 26.8 m
- Single U-loop installed with spacing between pipes of 135 mm
- Pile entirely within London Clay
- Pipe discretised using linear elements:
 - If elements are $1 m \text{ long: } P_e = 1.33 \times 10^6$
 - To satisfy $P_e \leq 1$, size should be $7.5 \times 10^{-7} m$
 - Alternatively, use Petrov-Galerkin FE

Modelling pipe-pile-soil interaction

London Clay

Modelling pipe-pile-soil interaction

Modelling pipe-pile-soil interaction

Temperature-dependent soil-fluid behaviour

Conclusions

- Thermo-active structures need to be assessed during design considering issues of <u>stability</u> (forces), <u>serviceability</u> (deformations) and <u>impact on</u> <u>neighbouring structures</u>
- These require **new aspects of numerical analysis** to be developed
- New components of analysis require more information from <u>experimental</u> <u>investigation</u> (calibration) and from <u>field testing</u> (validation)
- There are <u>substantial transient effects</u> when modelling thermo-active piles
 ignoring these will lead to overestimation of pile axial forces
- Modelling the <u>full pipe-pile-soil interaction</u> provides new insight into the pile response and its thermal performance
- Detailed modelling can be used to <u>reduce uncertainties</u>, <u>remove excessive</u>
 <u>conservatism</u> and enables the <u>assessment of more complex systems</u>