

Heat emitters for Heat Pump systems

Bill Bucknell

The Institute

- Founded in 1964
- Systems incorporating circulating pumps needed for small-bore pipework
- Need careful design
- Entry into membership via one-year design course
- Higher grades of membership for consulting engineer members

The Institute

- Membership by qualification
- Membership by experience
- Members chair various industry groups
 - Heating Strategy Group of the Energy Efficiency Partnership for Homes
 - CIBSE Domestic Building Services Panel
 - HHIC Training Group
- Members serve on various committees
 - Most industry related BSI groups include, and some chaired by, IDHEE members

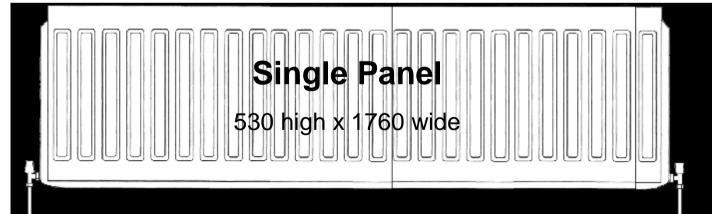
The Institute

- Major contributor to the CIBSE Domestic Guides
 - Domestic Heating Design Guide
 - Underfloor Heating Design & Installation Guide
 - Solar Heating Design & Installation Guide
- Originator of Energy Efficiency for Domestic Heating course and assessment
- Provider of courses
 - Domestic heating design
 - Solar heating design
 - Ground Source Heatpumps system design (work in progress)

- Radiator outputs influenced by temperature of circulating heating medium (water)...
- ...and the design air temperature of the space being heated
- The greater the temperature difference between the water and the air, the greater the output per m² of radiator surface
- Radiators with lower circulating temperatures require greater surface area, i.e. bigger

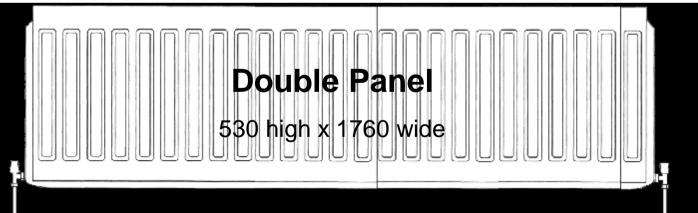
- Radiators installed with older non-condensing boilers were probably oversized in the first place and may well provide the required output with a condensing boiler (not guaranteed)
 - 82°C / 70°C flow / return (non-condensing)
 - 70°C / 50°C flow / return (condensing)
- Radiators installed with GSHPs will need larger radiators (more surface area)
 - 50°C / 42°C flow / return (typical)

- So, how much larger?
- To demonstrate the difference we will use a design room temperature of 21°C
- The mean water to air temperature differences for the three system types under discussion are
 - 55 degC for older non-condensing boiler systems
 - 39 degC for modern condensing boiler systems
 - 25 degC for ground source heatpump systems



- So, how much larger?
- Radiator outputs are quoted at a mean water to air difference of 50 degC
- If the difference is 55 then the radiator will emit 12.6% more heat than the catalogue states
- If the difference is 39 then the radiator will emit 26.5% LESS heat than the catalogue states
- If the difference is 25 then the radiator will emit 57.7% LESS heat than the catalogue states

- So, how much larger?
- For a design heat load of 1500 Watts
- With a non-condensing boiler select a radiator from catalogue for 1332 Watts




- So, how much larger?
- For a design heat load of 1500 Watts
- With a condensing boiler select a radiator from catalogue for 2041 Watts

- So, how much larger?
- For a design heat load of 1500 Watts
- With a heatpump select a radiator <u>from catalogue</u> for 3546 Watts

- Is there a solution?
- Underfloor heating to the rescue!
- If the underfloor heating is designed to provide comfort at design conditions with a flow temperature to the coils of 35°C, the resulting MWT of 31°C will produce between approximately 27 W/m² (deep pile carpet or floorboards) to 49 W/m² (ceramic tiles) from pipes at 200mm centres in a 75mm screed
- A table of typical outputs per m² of heated floor follows

• Is there a solution? - Underfloor heating to the rescue!

66	49	49	38	38	31	32	27	
100	200	100	200	100	200	100	200	
Underfloor pipe centres :: W/m ² output								
Ceramic tiles		Parquet blocks		Carpet		Deep pile carpet		
MWT = $31^{\circ}C$:: (Flow = $35^{\circ}C$) :: Room temp. = $20^{\circ}C$								

• Is there a solution? - Underfloor heating to the rescue!

MWT = $46^{\circ}C$:: (Flow = $50^{\circ}C$) :: Room temp. = $20^{\circ}C$								
Ceramic tiles		Parquet blocks		Carpet		Deep pile carpet		
Underfloor pipe centres :: W/m ² output								
100	200	100	200	100	200	100	200	
160	119	119	93	94	76	79	66	

Source: Underfloor Heating Design & Installation Guide

- What does all mean for systems that mix radiators with underfloor heating?
- The heatpump must operate to deliver water to the system at not less than 50°C (to satify the radiators' requirements)
- This means a typical CoP will be 2.8
- What does this mean for systems with only underfloor heating, on each floor?
- The heatpump can operate to deliver water to the system at 35°C
- This means a typical CoP will be 4.0

- Are heatpumps with radiators viable?
- Take a heating system with a design load of 11 kW
- The cost of gas is around 3p per kWh (average)
 - Typical heating season fuel cost £385.00
- The cost of electricity is around 10.8p per kWh (average)
 - Typical heating season fuel cost £445.00 (H/P CoP 2.8)

Underfloor Htg with GSHPs

- Are heatpumps with underfloor heating throughout viable?
- Take a heating system with a design load of 11 kW
- The cost of gas is around 3p per kWh (average)
 - Typical heating season fuel cost £385.00
- The cost of electricity is around 10.8p per kWh (average)
 - Typical heating season fuel cost £312.00 (H/P CoP 4.0)

In conclusion....

- Beneficial to design GSHPs into new build
 - all space heating requirements can be satisfied using underfloor heating
 - CoP of heatpump means cost per kWh of delivered heat is less than natural gas at current prices
 - but consider payback period to cover the difference in cost of gas boiler installation or GSHP installation
- If any radiators used for heat emission
 - lower CoP raises cost per kWh of delivered heat above that of natural gas
 - Cannot raise stored domestic hot water to a safe temperature

In conclusion....

- If any radiators used for heat emission
 - lower CoP raises cost per kWh of delivered heat above that of natural gas
 - but <u>if not</u> on mains gas, GSHPs show significant running cost savings over both oil-fired or LPG-fired boiler/radiator systems
 - still cannot raise stored domestic hot water to a safe temperature

In conclusion....

- Adding GSHPs into existing heating systems
 - not before improving insulation levels in every way possible
 - even with improved insulation (if possible) radiators may not be large enough for lower water temperatures
- If any radiators used for heat emission
 - lower CoP raises cost per kWh of delivered heat above that of natural gas
 - but still lower cost than oil or LPG
 - Cannot raise stored domestic hot water to a safe temperature

....and finally, based on running costs

	GSHP 35°C	GSHP 50°C	Nat. Gas Boiler	Oil Boiler	LPG Boiler
Underfloor Heating throughout	ü	Û	Û	Û	Û
Part Underfloor Heating, part Radiators	Û	?	Ü	Û	Û
Radiators throughout	Û	?	Ü	Ü	Ü
DHW (No supplementary)	Û	Û	Ü	Ü	Ü

? Depends on available radiator surface area

Thank you for your attention

CIBSE Domestic Design Guides are available from the IDHEE online shop

Domestic Heating

Underfloor Heating

Solar Heating

www.idhee.org.uk

Institute of Domestic Heating & Environmental Engineers Southampton 023 8066 8900

