

EarthEnergy A Division of GeoScience

Robin Curtis

"The longest title in the programme......"

GeoScience

....in 20 minutes...!!

GeoScience

Impossible !!

GeoScience

Target audience ?

GeoScience

Where I am coming from...

GeoScience

Carbon

(It only appears 3 times in the titles)

What to do in 20 minutes ?

Pointers for later (in the bar ?)

GeoScience

Make you all feel good first...

GeoScience

Renewable – Sustainable – Proven – Achievable – Realistic

GeoScience

1) We can't experiment on our customers / clients.

2) We have our detractors..

3) Nuture

Some issues we need to deal with.....

(debunking the myths)

Take care with what you say to who....big impacts

GeoScience

"GeoExchange banned in the UK" ?!

GSHPs are "Unsustainable" ??!!

GeoScience

Renewable – Sustainable – Proven – Achievable – Realistic

GeoScience

Some other issues we need to deal with.....

(best practice v poor practice)

Best practice issues ... some examples

(Avoid working to EN-80110X VDI-80110X ISO-80110X ARI-80110X)

GeoScience

GeoScience

GeoScience

10% contingency on ground loops?

VDI 4640 IGSHPA Canadian

....GSHP Association - with BDA?

GeoScience

TR30 Corgi CE82 EU-HP Cert

GeoScience

Types of gshp systems: 1) Ones that don't work 2) Ones that "work" 3) Ones that work AND Save significant carbon **Deliver significant renewables** At reasonable running cost

GeoScience

Low Carbon Buildings

Building Regulations Part L

2006 – CO₂ based compliance
20% improvement over 2002
2010 – further 25% reduction
2016 – "zero" carbon

Planning policies

"Merton rule" (PPS22)
10 – 20% renewables contribution
Adopted by 90+ local authorities
Renewable cost constraints no longer a barrier

Code for Sustainable Homes

Mandatory for all new publicly funded housing development Minimum CO₂ emission levels

GeoScience

How we got here....

Ground Source Heat Pump

75% Renewable Geothermal Energy

GeoScience

CO2 REDUCTION

It's a given.... Comes with the technology (in the UK)

GeoScience

ETSU-R-88

ETSU

Full Fuel Cycle Atmospheric Emissions and Global Warming Impacts from UK Electricity Generation

dti

GeoScience

CO₂ REDUCTION Gas @ 0.21kgCO₂/kWh_t UK Electricity @ 0.45 kgCO₂/kWh_e

@ avg 85% eff gas > 0.24kg/ kWh_t of useful heat @SPF= 3.5 heat pump > 0.13kg/kWh_t of useful heat = 46% reduction in CO_2

GeoScience

1.040

Heat Pumps vs Gas - CO2 saving 80%-100% 60%-80% 5 40%-60% 20%-40% 4.5 0%-20% -20%-0% -40%--20% 4 -60%--40% -80%--60% 3.5 -100%--80% -120%--100% 3 -140%--120% SPF -160%--140% 2.5 -180%--160% -200%--180% 2 -220%--200% -240%--220% 1.5 -260%--240% -280%--260% -300%--280% -320%--300% 0.5 -340%--320% 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 1 -360%--340% kgCO2/kWhe -380%--360% -400%--380%

GeoScience

jiek Teor

GeoScience

 \odot

0

192 119-2 00

GeoScience

Type 1 ...don't work

GeoScience

GeoScience

Type 1 ...don't work

...you probably won't be around for long if you concentrate on these...

GeoScience

Type 2 "work"... but

GeoScience

The temptations of supplementary heating..

Getting into hot water...

GeoScience

WARNING !!

Do not assume that what applies ex UK always applies here...

Type 3 "work"... and getting somewhere

Type 3 - Domestic

Well insulated Appropriately sized ground loop Properly sized ground loop - thermal and hydraulics Low temperature distribution system Buffering DHW Separation of heating and hot water temperatures Weather compensation Controls (constant running ??)

System Annual fuel costs Annual CO2

		(tonnes)
GSHP	£215	1.6
Natural gas (cond)	£300	2.9
Natural gas (non-c)	£345	3.3
LPG (bulk)(non-c)	£500	4.3
LPG (bottle)(non-c)	£670	4.3
Oil (35sec)(non-c)	£300	4.4
Elec (store+panels)(E7)	£510	6.5
House coal	£380	6.6
Smokeless solid fuel	£515	7.5

(100m2 - 12500kWh/yr as per SAP 2001)

GeoScience

Type 3 Non-Domestic

Low energy building Building loads / modelling ? Properly sized ground loop - thermal and hydraulics Thermal testing ? Distribution system(s) and temperatures Buffering Controls - Weather compensation Use of passive cooling Use of "heat recovery" to obtain free heating / cooling

GeoScience

GeoScience

An Introduction to Thermogeology Ground Source Heating and Cooling

GeoScience

GeoScience

GeoScience

CONCLUSIONS

- Established, robust, technology
- Can offer significant renewable heat
- Can offer low CO₂ emissions

• BUT we have to push for getting it "right"

GeoScience

GeoScience

