Theme: Energy Pile

Research Topic: "Selection of material used for thermopiles for recycling heat within a building"

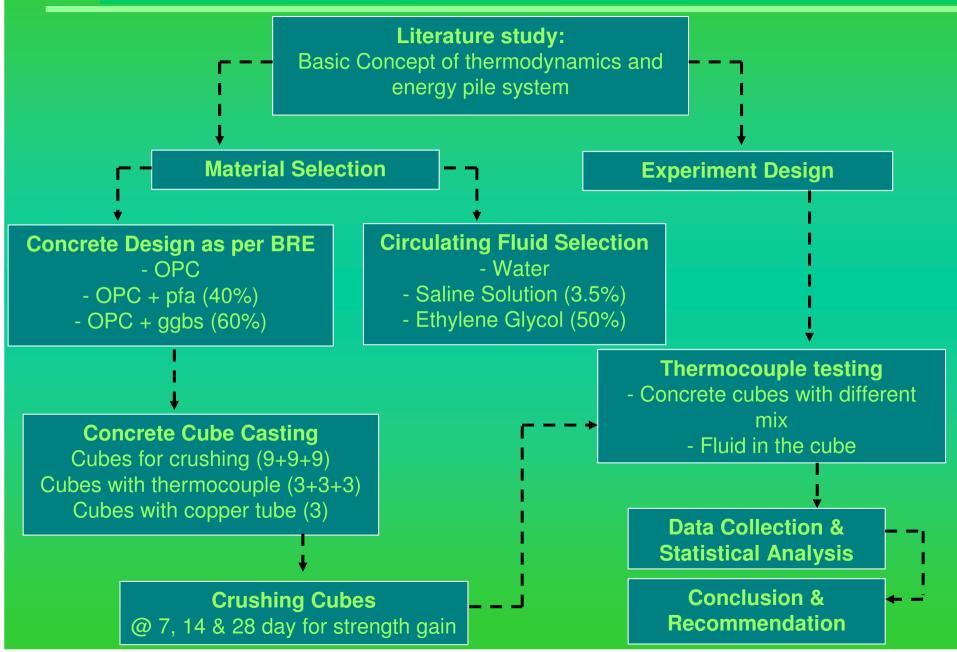
- Gautami Patel

AIM

To assess the type of concrete and circulating liquid suitable for a thermopile

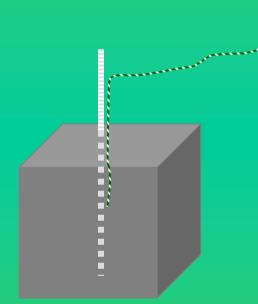
OBJECTIVES

1.Suitable type of concrete OPC, OPC+pfa & OPC+ggbs

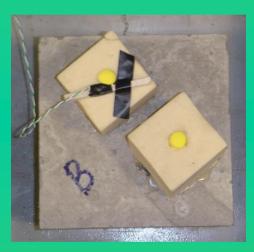

2.Suitable type of liquid Water, Saline solution, glycol

SCOPE & LIMITATION

Concrete design as per BRE ➤ 3 Types of Concrete \triangleright OPC, OPC + pfa, & OPC + ggbs 3 Types of liquid ➢ Water, 3.5% saline solution, 50% glycol solution Liquids tested with OPC cubes \geq No. of test per cube/liquid – 2

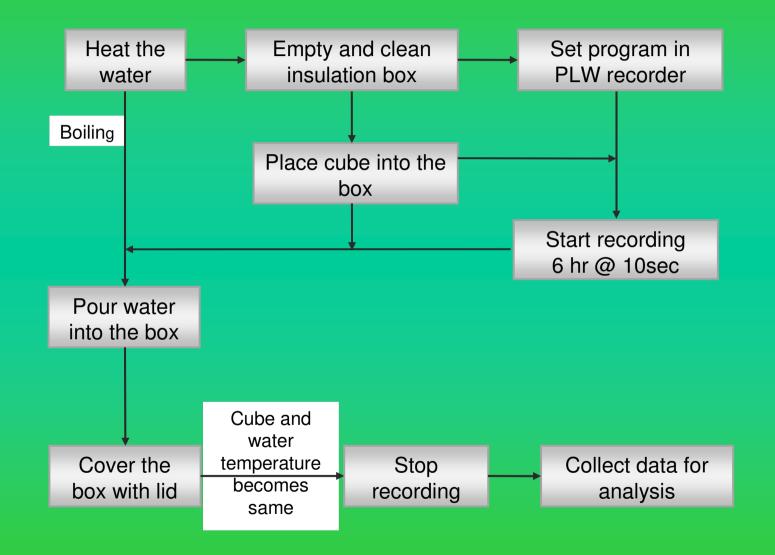

➢No. of specimen per mix - 3

A P P R O A C H


THERMOCOUPLE TEST

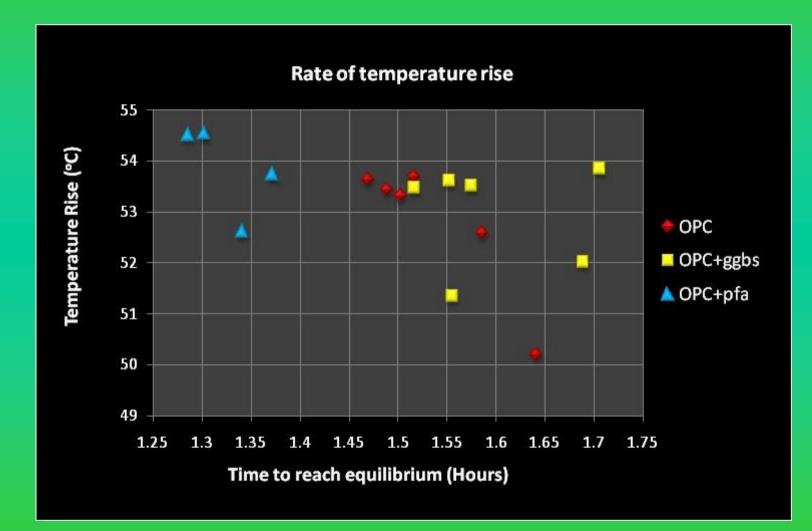
Preparing Cube for Test

THERMOCOUPLE TEST


Experiment Design

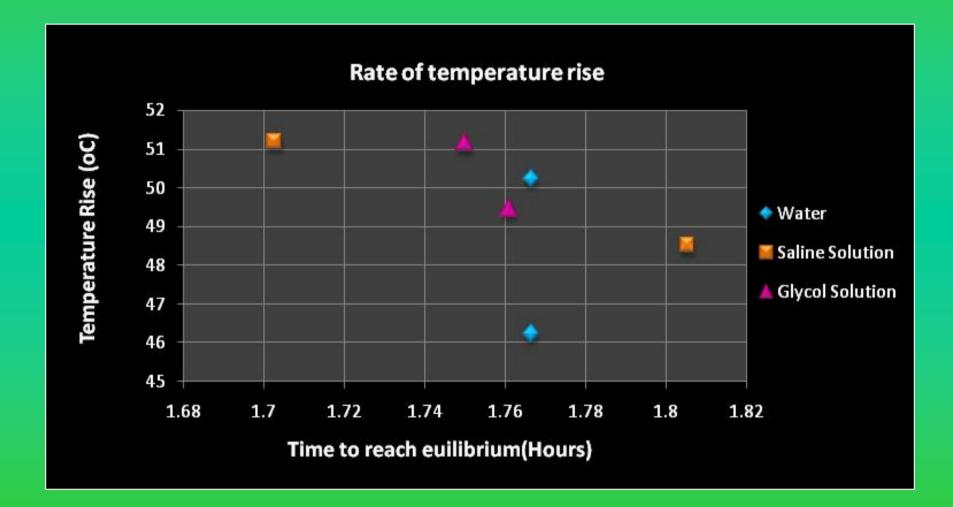
- ≻6 Thermocouples K Type
- 14/10 Ltr Water in the box
- Pico Technology
- ▶1st Test
- Readings for 6 hrs @ 10sec

Readings stopped once cube temperature same as water temperature

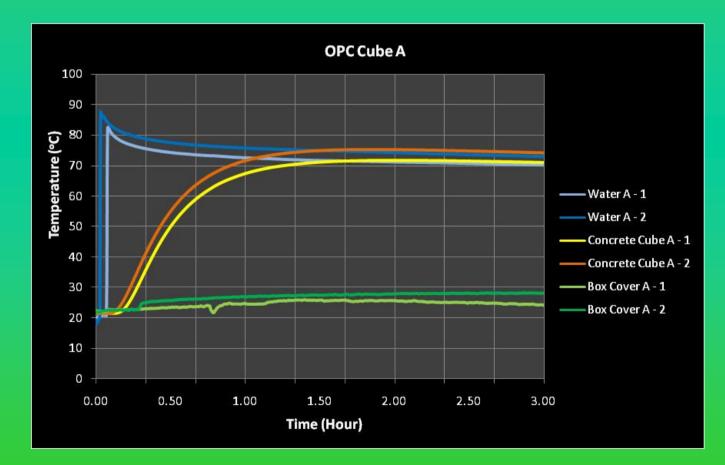

THERMOCOUPLE EXPERIMENT PROCEDURE

SUMMARY – CONCRETE MIX

Concrete Cube (No. of cubes		Cube Temperature	Equilibrium Temperature	Temperature Rise (∆T)	Time taken to reach equilibrium	Avg Rate of temperature Rise
X No. of test)`		°C	°C	°C	Hrs	°C/min
OPC (3X2)	Min	21.00	71.64	50.20	1.47	0.51
	Max	22.06	75.48	53.70	1.64	0.61
	Avg			52.81 (1.22)	1.53 (0.06)	0.58 (0.03)
OPC + ggbs (3X2)	Min	19.87	73.38	51.35	1.52	0.51
	Max	23.81	76.41	53.85	1.71	0.59
	Avg			52.97 (0.94)	1.60 (0.07)	0.55 (0.02)
OPC + pfa (2X2)	Min	20.93	75.47	52.62	1.29	0.65
	Max	23.06	76.54	54.54	1.37	0.71
	Avg			53.40 (0.90)	1.43 (0.11)	0.63 (0.05)


GRAPH - CONCRETE MIX

SUMMARY – CIRCULATING LIQUID


Circulating liquid		Initial Liquid Temperature	Equilibrium Temperature	Temperature Rise (∆T)	Time taken to reach equilibrium	Avg Rate of temperature Rise
		°C	°C	°C	Hrs	°C/min
Water	А	20.09	70.32	50.23	1.77	0.47
	В	23.17	69.39	46.22	1.77	0.44
	Avg			48.23 (2.01)	1.77 (0.00)	0.45 (0.02)
Saline Solution (3.5%)	А	21.59	70.11	48.52	1.81	0.45
	В	18.18	69.37	51.19	1.71	0.50
	Avg			49.86 (1.34)	1.75 (0.05)	0.47 (0.03)
Glycol Solution (50%)	А	21.10	70.56	49.46	1.76	0.47
	В	18.95	70.11	51.16	1.75	0.49
	Avg			50.31 (0.85)	1.76 (0.01)	0.48 (0.01)

GRAPH – CIRCULATING LIQUID

EXPERIMENT OBSERVATIONS

Initial maximum water temperature has the major impact on the equilibrium temperature value, though temperature rise pattern remains the same.

EXPERIMENT OBSERVATIONS

Initial maximum water temperature has the major impact on the equilibrium temperature value, though temperature rise pattern remains the same.

CONCLUSION

Considering thermal properties of material only

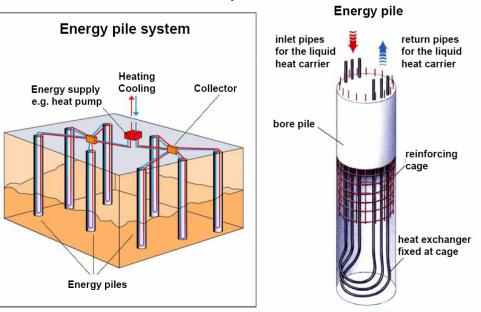
PFA suitable for absorbing more heat – energy piles

50% glycol solution suitable for circulating fluid

FUTURE SCOPE

- Material efficiency in monetary terms
- Concrete with varying % of pfa
- Glycol solution with varying % of water
- Aggregates used in concrete mix

THANK YOU


INTRODUCTION

10 – 20 mtr depth – ground temperature constant at 13°C

Thermopile - extract thermal energy from ground via appropriate foundations system

> Haka Gerodur, Energy Piles – the European Experience, Presentation by Alfons Ebnother

Dual Purpose – Heating & Cooling

WHY USE THERMOPILES?

Climate change – green house gas emission from human activity

- Energy crisis need to use renewable source of energy
- Operation cost reduction and no maintenance
- Long service life

