A Dynamic Three-Dimensional (3D) Numerical Borehole Heat Exchanger (BHE) Model

Miaomiao He, Simon Rees, Li Shao Institute of Energy and Sustainable Development

21st Jan 2010, GSHPA Research Seminar, Milton Keynes

Applications of BHEs Models

- 1. To design of BHEs
- 2. To analyze in-situ ground thermal conductivity test data
- 3. To integrate with building system simulation

Limitations of Existing Models

- Lack of detailed representation of BHE
- Variations in fluid temperature with depth cannot be considered explicitly in 2D models: assumptions have to be made to associate inlet and outlet temperatures with borehole temperatures
- Transient transport of the fluid and thermal mass of the fluid are neglected in all models

Model Development – GEMS3D

Built upon a finite volume solver – General Elliptical Multi-block Solver in 3 Dimensions (GEMS3D)

Partial Differential Equation for Heat Transfer

 $\frac{\partial T}{\partial t} + u_{j} \frac{\partial T}{\partial x} = \frac{\partial}{\partial x} \left(\frac{k}{\rho c_{p}} \frac{\partial T}{\partial x} \right) + S$ where u_{j} : velocity $\begin{vmatrix} u_{j} \end{vmatrix} > 0 & \text{in fluid cells} \\ k: \text{ thermal conductivity} & |u_{j}| > 0 \\ \rho c_{p}: \text{ volumetric heat capacity} \\ S: \text{ source term} \end{vmatrix}$

Model Development – Mesh

Multi-block structured boundary fitted mesh

GEMS3D Visualization - ParaView

Fluid Temperature along the Depth

A 2D Model Development

- Equivalent to GEMS3D model of one cell depth
- One pipe assumed to be the inlet; the other pipe assumed to be the outlet
- The outlet temperature calculated by iteration to reach the energy balance of the borehole

Outlet Temperature 2D & 3D

Outlet Temperature 2D & 3D

Advantages of a 3D Model – GEMS3D

- Simulate dynamics of fluid transport along pipe loop
- Apply various boundary conditions at surface
- Impose initial vertical ground temperature gradients
- Simulate different layers of rock and soil
- Obtain temperature distribution along borehole depth (fluid, borehole and ground)
- Examine heat transfer below borehole

Model Improvement – 2D + Pipe Model

 Two external pipes, one assumed to be connected with one pipe in the 2D model; the other pipe assumed to be connected with another pipe of the 2D model

Inlet

 Same numerical method as the 2D model

Successfully shaping our world

Outlet

Outlet Temperature – 2D + Pipe Model

Outlet Temperature – 2D + Pipe Model

Summary

- Development of a dynamic three-dimensional numerical model for BHEs
- Investigation of dynamics of fluid transport and transient response of a BHE
- Delayed response associated with fluid transport along pipe loop
- Improvement of a two-dimensional model

