Institute of Energy and Sustainable Development

FOUNDATION HEAT EXCHANGER RESEARCH

Simon Rees, Denis Fan

GSHPA Research Seminar

21 January 2010

What is a Foundation Heat Exchanger?

- A novel horizontal closed loop heat exchanger for residential buildings
- Minimises cost by making the most use of foundation/basement excavations and service trenches
- Horizontal loops are fixed to the outside of the excavations before they are backfilled.

FIRST PHASE FHX DEVELOPMENT

- Early trials in Tennessee monitored by Oak Ridge National lab
- Trial designs were dictated by site conditions and building form – no design tools were available and no optimisation was possible

- Trials were successful but questions remain:
 - Long term performance?
 - Sensitivity to building form and occupancy patterns?
 - Feasibility in other climates?
 - Design and simulation methods need to be development

THE CURRENT PROJECT "FOUNDATION HEAT EXCHANGER DESIGN TOOL DEVELOPMENT AND VALIDATION"

 US Department of Energy funded project in partnership with Oklahoma State University and Oak Ridge National Lab

- The novel heat exchanger has been installed in two experimental low energy houses in Tennessee
- Oklahoma State University is working on design tool development
- DMU is working on implementation of a numerical model in the building simulation tool EnergyPlus

EXPERIMENTAL HOUSING

- Two Low Energy houses have been instrumented in Oak Ridge Tennessee – SIPS and advanced framed construction
- FHX is installed around two sides of the basements and in the service trenches
- Soil thermal conductivity and undisturbed temperatures have been measured
- Wall heat fluxes and system, wall and soil temperatures are being collected over a 2 year period for model validation

FHX INSTRUMENTATION

DESIGN TOOL DEVELOPMENT

- OSU are studying two approaches to design tool development:
 - Superposition of responses calculated using an analytical "line-source" solutions
 - A course-grid 2D finite difference model

NUMERICAL MODEL DEVELOPMENT

- A detailed FHX model is being developed using the GEMS3D Finite Volume Method code and will be used to:
 - Model the system in the experimental buildings in 3D
 - Form a reference for comparison with simpler models
 - Incorporate a component model in the building simulation program EnergyPlus (probably 2D)
- The code has been validated using the IEA Annex 43 BESTEST analytical and inter-model test suite for ground coupled buildings

2D OR NOT 2D: THAT IS THE • A tool has been developed to **QUESTION?**

- A tool has been developed to generate 2D computational meshes from basic design parameters. This is essential for a robust model suitable for routine building simulation tasks.
- A 2D representation may be good enough but three-dimensional effects (e.g. corners) are known to be significant in predicting slab and basement heat transfer
- Currently a 3D model is probably too slow for annual simulation tools
- The limitations of 2D models are being explored – a 2 ½ D model is conceivable

RESEARCH QUESTIONS

- Coupling between the FHX and building zone models
- Interactions between the FHX and the basement
- System feasibility and scalability:
 - Building form
 - Fabric design
 - Internal heat gains
 - More extreme climates

QUESTIONS ?

