

## **Today's Presentation**

#### The Basics of Ground Source / Role of the Drilling Contractor

Robert Hill – Hydracrat Andrea Ellison – Ground Source Heat Pump Association

10<sup>th</sup> June 2021



### About Hydracrat

- Founded in February 1960
- Located in Lanarkshire, Scotland
- Significant drilling background in energy & water markets
- Provide borehole drilling for Ground Source Heat Pumps
- Diverse drill fleet; all designed and built in-house
- Experienced and qualified office team and site crew





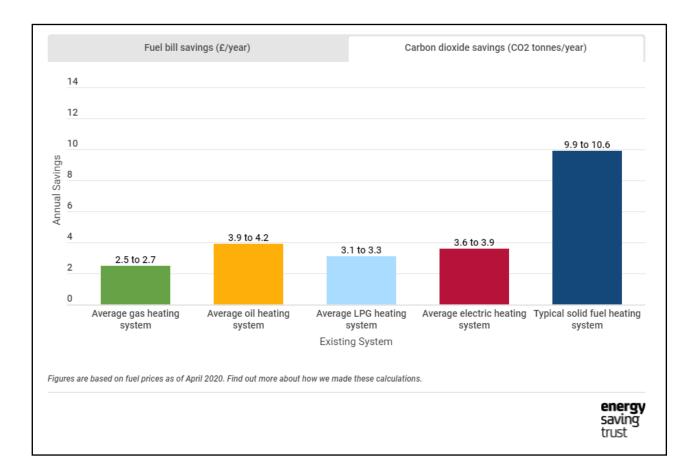
#### Why are we talking about Ground Source?

- Governments around the world working to limit the impact of climate change
- Scottish Government aim to achieve 'net zero' by 2045
- Scot Gov recently published aim to transform 1 million homes to use low and zero emissions heating systems by 2030
- Fossil fuel intensive systems such as gas and oil boilers expected to be phased out
- Heat Pumps are the cleanest, most readily available lowcarbon heating technology currently on the market
- Heat Pumps harness heat from a source already available (such as from the ground, water or air) as opposed to generating heat by burning fossil fuels

#### New rules for low carbon heating in Scots homes

New rules are to be introduced to ensure all new homes built in Scotland use renewable or low-carbon heating.

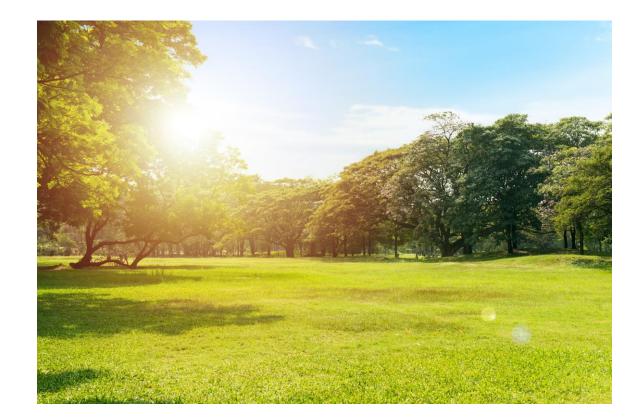
The regulations, being introduced by the Scottish government from 2024, are part of plans to cut greenhouse gas emissions.


Renewable and low-carbon systems will also be phased in for new nondomestic buildings from 2024.

Low-carbon heating is often used to refer to systems that use heat pumps or other alternatives to gas boilers.



# Efficiency and costs of heat pump


- GSHPs are one of the cleanest, most efficient heating solutions currently on the market
- COP of a GSHP: 300-400%
- COP of a typical gas boiler: 85-90%
- Typical GSHP installation cost: £14k £20k
- Running costs variable depending on property, insulation etc
- Funding opportunities are available





### The Concept of Ground Source

- Thermal energy provided by sun effectively soaked up by the earth
- Temperature in heated ground rock typically 9-12C to normal drilling depth in Scotland (i.e. down to around 200mbgl)
- Temperature of ground beyond shallow depths is generally consistent regardless of time of day or year
- The heat from the ground can be harnessed to warm buildings in the winter using a GSHP
- Can also provides cooling opportunities
- Renewable, low-carbon source of heat





#### Methods of Heat Extraction - Horizontal


#### **Straight Pipes**

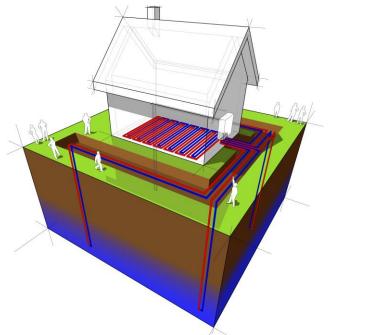
- Straight pipes laid horizontally at shallow depth
- Typically laid over a surface area or trenches
- Liquid containing antifreeze circulates within pipes

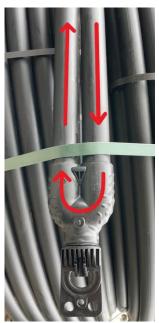
#### **Slinkies**

- Coiled loops of pipe laid horizontally
- Each line of coil laid in trench dug to shallow depth
- Liquid containing antifreeze circulates within pipes

Horizontal solutions are generally cheaper than vertical borehole solutions but need significantly more land Must be installed in line with GSHPA Standards

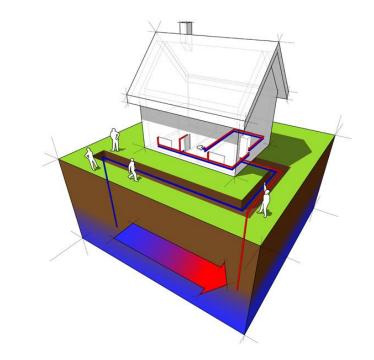




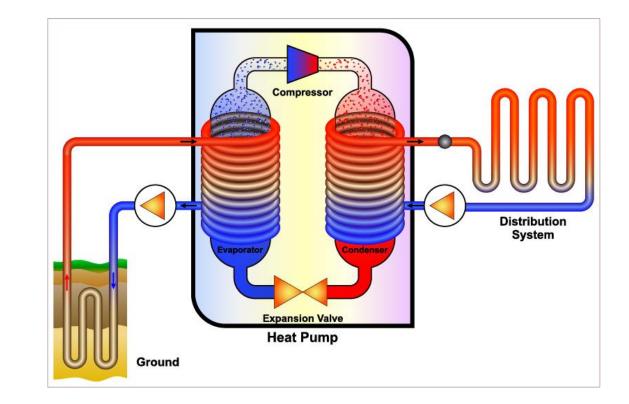

### Methods of Heat Extraction - Vertical

#### **Closed-Loop**


- Boreholes drilled into ground to depths up to 200mbgl
- 40mm pipe with a u-bend at bottom installed to depth
- Liquid containing antifreeze continuously circulated around the pipes to harness heat
- Installed in compliance with GSHPA Vertical Borehole Standard






#### **Open-Loop**

- Boreholes drilled into underground aquifer or mine workings to harness heat from groundwater
- Groundwater pumped to surface from abstraction borehole, circulated to heat pump before being discharged at a lower temperature via separate borehole(s) located to minimise thermal interference between abstraction and recharge.
- Must comply with CP3 developed jointly by CIBSE, GSHPA, HPA



#### The Heat Pump

- Located inside building, powered by electricity
- Can provide heating and hot water
- Various sizes of heat pumps which are generally indicated by power output rating (i.e 12kW)
- Sized based on property, insulation, size of radiators/UFH, desired indoor temperature
- Heat pump effectively operates like a fridge in reverse
- Supply and return pipes between heat pump to manifold chamber
- Connection between manifold and sub-surface collector loops
- Vertical / horizontal collector loops installed by contractor





#### **Role of Drilling Contractor - Preparations**

- Drilling contractor will drill boreholes for vertical closed-loop and open-loop GSHPs
- Installer / Designer typically engages the services of the drilling contractor
- Installer / Designer provides details of drilling requirements (no. of boreholes, borehole depth, materials) along with drilling conditions and obligations
- Assessment of drilling conditions / constraints
- Drilling contractor prepares price for drilling based on the scope of works, drilling conditions and relevant regulations / statutory obligations
- Site visit before drilling starts
- Drilling contractor prepares Health & Safety documentation (RAMS, underground services)





### **Role of Drilling Contractor - Practicalities**

The drilling contractor will assess and review information on the following prior to mobilisation to site:

- Site access
- Working space
- Borehole positions / spacing
- Underground services (gas, power, water, fibreoptic)
- Trees and roots
- Geology / historic mining activities (Coal Authority)
- Environmental Regulations (SEPA, EA, NRW)
- GSHPA Vertical Borehole Standard / CP3
- Artesian pressure

The driller will then determine the optimal drilling rig, drilling techniques and ancillary equipment for the project, thus enabling calculation of an estimated price.





### Role of Drilling Contractor -Drilling Closed-Loop system

- 1. Mobilise to site
- 2. Set up at borehole location
- 3. Drill and case through superficial deposits (drift)
- 4. Drill through bedrock to target depth
- 5. Pressure-test loops prior to installation
- 6. Install collector loops to borehole depth
- 7. Pressure-test loops after installation
- 8. Fill borehole with grout
- 9. Finish off borehole, ready for connection
- More than one borehole? Then repeats steps 2-8

Open-Loop System = Different Type of Installation









#### **Benefits of Ground Source**

- Efficient, low-carbon source of heating
- Consistent source of heating all year round
- Adaptable cooling in the summer
- Heat or cool at night = cheaper electricity
- Long life span
- ✓ No parts visible externally
- Energy security
- ✓ Local / national supply chain









#### **Robert W Hill**

**Business Development Manager** 

rwh@hydracrat.scot
01698 860 100
http://hydracrat.com/