

Thermal Behaviour of Piles used as Heat Exchangers

Fleur Loveridge, University of Southampton

Contents

- Piles compared to borehole heat exchangers
 - Layout of the heat exchanegrs
 - Geometry of the heat exchanger
 - Pipe arrangements within the heat exchanger
 - Connection of heat exchanger pipe circuits
- Thermal response testing
- Fieldwork
- Conclusions

Scope

- Bored foundation piles with concrete cast in situ
- Piles, not walls or piled walls
- Thermal behaviour, not thermo-mechanical

Differences to BHs

Pile Layout

• Often irregular in terms of length, diameter & spacing

Geometry: Southampton Line and Cylindrical Sources, Ground Response

Geometry : Pile Diameter

	r=0.1m	r=0.3m	r=0.6m
5% error Fo=10	28 hours	10 days	42 days
10% error Fo=5	14 hours	5 days	21 days
25% error Fo=2	6 hours	2 days	8 days

7

Pile Geometry : Aspect Ratio

- Aspect ratio = length/diameter
- Borehole AR = 500 tc 2,000
- Pile AR = 10 to 50

Pile Geometry – Pile Length

Pipe Arrangements

- More pipes
- More widely spaced
- Larger cover

- Lower Resistance
- Higher resistance?
- Higher Resistance

Pile Thermal Resistance

$$R_b = R_{pconv} + R_{pcond} + R_c$$

- R_{pconv} & R_{pcond} relatively "easy" to calculate
- R_c complex multipole method or numerical modelling
- Depends on pipe arrangements and thermal conductivity of concrete
- Possibility to determine in situ ??

Numerical Modelling for R_c

- Aim to determine shape factor so that R_c can be calculated
- Steady state vs transient
- Lower resistance if:
 - More pipes
 - Pipes closer to edge
- For central pipes number & arrangement matters less
- Still need to know $\lambda_{concrete}$

Design Chart for R_c with four pipes

16

Pile Thermal Resistance - Values

$$R_b = R_{pconv} + R_{pcond} + R_c$$

Pile Dia mm	Pipes	Rp _{conv}	Rp _{cond}	Rc λ=1.25	Rc λ= 2.5	Rb λ= 1.25	Rb λ= 2.5
300	2 central	0.05	0.04	0.214	0.107	0.304	0.197
300	2 edge	0.05	0.04	0.148	0.074	0.238	0.164
600	4 central	0.02	0.02	0.282	0.141	0.322	0.181
600	4 edge	0.02	0.02	0.090	0.045	0.130	0.085
1200	4 central	0.02	0.02	0.372	0.186	0.412	0.226
1200	8 edge	0.01	0.01	0.046	0.023	0.066	0.043

Pile Resistance: Time for Steady State

- 300mm diameter pile:
 < 1 day
- 600mm diameter pile: up to 2 days
- 1200mm diameter pile: up to 5 days
- Is steady state resistance approach appropriate?

3D: Pipe Interactions

3D: Pipe Interactions (modelling)

Rohr 1; abwärts Rohr 2; aufwärts Rohr 3; abwärts Rohr 4; aufwärts Rohr 5; abwärts Rohr 6; aufwärts Rohr 7; abwärts Rohr 8; aufwärts

Southampton

3D: Pipe Interactions (thermal resistance)

Flow Rate	Thermal Resistance
1 m/s	0.05 mK/W
0.5 m/s	0.07 mK/W
0.25 m/s	0.09 mK/W
0.1 m/s	0.15 mK/W

Pile Connections

- 1 No. 50m deep pile with 3 up and down loops
- 3 No. 25m deep piles with 2 up and down loops each

Thermal Response Testing

Thermal Response Testing

• Data discarded prior to Fo=5:

$$t_{\min} = 5 \frac{r_b^2}{\alpha}$$

- 300mm dia pile ~ 1.3 days
- 600mm dia pile ~ 5 days
- 1200mm dia pile ~ 21 days

• Standard TRT timescale = 60 hrs = 2.5 days

Temperature at edge of concrete

Southampton

Temperature at pipes (neglecting R_p)

Temperature at pipes (neglecting R_p)

In reality?

- Few TRTs on piles done so far.
- Recent test by GIL of large diameter pile with central loops gave good results
- Warning: measuring concrete properties not soil
- Warning: can not determine Rb in this case

Fieldwork

Field Monitoring

- Need to quantify real behaviour
- Instrumentation of a site in East London
- Always looking for more site opportunities

Initial Data

Conclusions

Conclusions & Recommendations

- Care with respect to irregular pile layouts.
- Important to consider larger diameter of piles, especially for small time-step behaviour. A solid cylinder model may be most appropriate.
- Short piles mean an appropriate surface boundary condition is important.
- Probably larger thermal resistance, but also higher range of values.
- A transient model of concrete and ground may be most appropriate for large diameter piles
- Connecting piles together can lead to temperature and heat flux variations in the pile group.

Conclusions & Recommendations

- Thermal Response Testing:
 - Small diameter piles, standard test ok
 - Large diameter CFA piles, measure concrete properties, but NOT Rb
 - Large diameter piles with pipes at edge, not appropriate (without long timescales)
 - Tests on boreholes during site investigation
- Most design currently conservative due to some of these uncertainties:
 - Scope for improving efficiency in the future