Southampion

Thermal Behaviour of Piles used as Heat Exchangers

Fleur Loveridge,
University of Southampton

Southampton

Contents

- Piles compared to borehole heat exchangers
- Layout of the heat exchanegrs
- Geometry of the heat exchanger
- Pipe arrangements within the heat exchanger
- Connection of heat exchanger pipe circuits
- Thermal response testing
- Fieldwork
- Conclusions

Southampton

Scope

- Bored foundation piles with concrete cast in situ
- Piles, not walls or piled walls
- Thermal behaviour, not thermo-mechanical

Differences to BHs

Southampmpon

Pile Layout

- Often irregular in terms of length, diameter \& spacing
- Determined by structural engineer

Geometry: Southâmpion Line and Cylindrical Sources, Ground Response

Geometry : Pile Diameter

Southampton

$\alpha \mathrm{t} / \mathrm{rb}^{2}$

	$\mathbf{r}=\mathbf{0 . 1 m}$	$\mathbf{r}=\mathbf{0 . 3 m}$	$\mathbf{r}=\mathbf{0 . 6 m}$
5% error $\mathrm{Fo}=10$	28 hours	10 days	42 days
10% error $\mathrm{Fo}=5$	14 hours	5 days	21 days
25% error $\mathrm{Fo}=2$	6 hours	2 days	8 days

Southâmpinton

Pile Geometry : Aspect Ratio

- Aspect ratio = length/ diameter
- Borehole AR =500 tc 2,000
- Pile AR = 10 to 50

$\alpha t / r_{b}^{2}$

Southampton

Aspect Ratio: Thermal Response

Southanumpon

Pile Geometry - Pile Length

Southampton

Pipe Arrangements

- More pipes
- More widely spaced
- Larger cover
- Lower Resistance
- Higher resistance?
- Higher Resistance

pipes installed inside prefabricated steel cage

pipes installed outside cage during construction
shear links (horizontal steel main reinforcing steel
heat transfer pipes
steel bar for stiffness

pipes and steel bar plunged into centre of pile after concrete is poured

Southampton

Pile Thermal Resistance

$$
R_{b}=R_{p c o n v}+R_{p c o n d}+R_{c}
$$

- $R_{\text {poonv }} \& R_{\text {poond }}$ relatively "easy" to calculate
- R_{c} - complex multipole method or numerical modelling
- Depends on pipe arrangements and thermal conductivity of concrete
- Possibility to determine in situ ??

Southampton

Numerical Modelling for R_{c}

- Aim to determine shape factor so that R_{c} can be calculated

$$
R=\frac{1}{S_{f} \lambda}
$$

- Steady state vs transient
- Lower resistance if:
- More pipes
- Pipes closer to edge
- For central pipes number \& arrangement matters less
- Still need to know $\lambda_{\text {concrete }}$

Southâmpon

Design Chart for R_{c} with four pipes

Southâmporn

Pile Thermal Resistance-Values

$$
R_{b}=R_{p c o n v}+R_{p c o n d}+R_{c}
$$

Pile Dia mm	Pipes	$\mathbf{R p}_{\text {conv }}$	$\mathbf{R p}_{\text {cond }}$	Rc $\lambda=\mathbf{1 . 2 5}$	Rc $\lambda=2.5$	$\mathbf{R b}$ $\lambda=\mathbf{1 . 2 5}$	$\mathbf{R b}$ $\lambda=\mathbf{2 . 5}$
300	2 central	0.05	0.04	0.214	0.107	0.304	0.197
300	2 edge	0.05	0.04	0.148	0.074	0.238	0.164
600	4 central	0.02	0.02	0.282	0.141	0.322	0.181
600	4 edge	0.02	0.02	0.090	0.045	0.130	0.085
1200	4 central	0.02	0.02	0.372	0.186	0.412	0.226
1200	8 edge	0.01	0.01	0.046	0.023	0.066	0.043

Pile Resistance: Time for Steady State

- 300mm diameter pile: <1 day
- 600mm diameter pile: up to 2 days
- 1200mm diameter pile: up to 5 days
- Is steady state resistance approach appropriate?

Southampton

3D: Pipe Interactions

3D: Pipe Interactions (modelling)

3D: Pipe Interactions (thermal resistance)

Flow Rate	Thermal Resistance
$1 \mathrm{~m} / \mathrm{s}$	$0.05 \mathrm{mK} / \mathrm{W}$
$0.5 \mathrm{~m} / \mathrm{s}$	$0.07 \mathrm{mK} / \mathrm{W}$
$0.25 \mathrm{~m} / \mathrm{s}$	$0.09 \mathrm{mK} / \mathrm{W}$
$0.1 \mathrm{~m} / \mathrm{s}$	$0.15 \mathrm{mK} / \mathrm{W}$

Southampurion

Pile Connections

- 1 No. 50 m deep pile with 3 up and down loops
- 3 No. 25m deep piles with 2 up and down loops each

- 50 m pile 6 pipes
- - -25 m pile 4 pipes (\#1)
$\cdots \cdots \cdot . .25$ mile 4 pipes (\#2)
$--\cdots 25$ m pile 4 pipes (\#3)

Assumes:
Flow of $0.75 \mathrm{~m} / \mathrm{s}$
Pipe inner diameter of 28 mm Fluid specific heat of $\mathbf{4 2 0 0 J} / \mathrm{kgK}$
Thermal resistance of $0.1 \mathrm{mK} \mathbf{W}$

Southamporn

Thermal Response

Testing

Southanumpon

Thermal Response Testing

- Data discarded prior to Fo=5:

$$
t_{\min }=5 \frac{r_{b}^{2}}{\alpha}
$$

- 300mm dia pile ~ 1.3 days
- 600mm dia pile ~ 5 days
- 1200mm dia pile ~ 21 days
- Standard TRT timescale $=60 \mathrm{hrs}=2.5$ days

Temperature at pipes

 (neglecting R_{p})
Southampton

Temperature at pipes

 (neglecting R_{p})
Southampton

Southampton

In reality?

- FewTRTs on piles done so far.
- Recent test by GIL of large diameter pile with central loops gave good results
- Warning: measuring concrete properties not soil
- Warning: can not
 determine Rb in this case

Southampon

Fieldwork

Southampton

Field Monitoring

- Need to quantify real behaviour
- Instrumentation of a site in East London
- Always looking for more site opportunities

Initial Data

Southampton

South
 Southampton

Conclusions

Southampton

Conclusions \& Recommendations

- Care with respect to irregular pile layouts.
- Important to consider larger diameter of piles, especially for small time-step behaviour. A solid cylinder model may be most appropriate.
- Short piles mean an appropriate surface boundary condition is important.
- Probably larger thermal resistance, but also higher range of values.
- A transient model of concrete and ground may be most appropriate for large diameter piles
- Connecting piles together can lead to temperature and heat flux variations in the pile group.

Southampton

Conclusions \& Recommendations

- Thermal Response Testing:
- Small diameter piles, standard test ok
- Large diameter CFA piles, measure concrete properties, but NOT Rb
- Large diameter piles with pipes at edge, not appropriate (without long timescales)
- Tests on boreholes during site investigation
- Most design currently conservative due to some of these uncertainties:
- Scope for improving efficiency in the future

