

Provision of thermal properties data for ground collector loop design

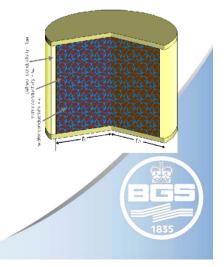
Jon Busby British Geological Survey

© NERC All rights reserved

Thermal conductivity

Thermal conductivity is the capacity of a material to conduct or transmit heat

For designing a closed loop ground collector the three key parameters are temperature, thermal conductivity and saturation.


Thermal conductivity can be measured in the laboratory

- Discs cut from cores Divided bar steady state method
- Soft material Needle probe transient line source method
- Chippings Pill box Divided bar

SI unit of measurement W m⁻¹ K⁻¹

© NERC All rights reserved

Thermal conductivity mixing laws

Thermal conductivities, both measured and estimated, often need to be combined.

Horizontally layered (perpendicular to heat flow)


Harmonic mean

$$n \quad \frac{1}{\lambda_B} = \frac{1}{Z} \sum_{i=1}^n \frac{z_i}{\lambda_i}$$

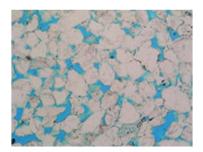
 $\lambda_{\rm B}$ = mean thermal conductivity

 λ_i = thermal conductivity of the ith bed

 z_i = thickness of the ith bed

Arithmetic mean

$$\lambda_B = \frac{1}{Z} \sum_{i=1}^n z_i \lambda_i$$

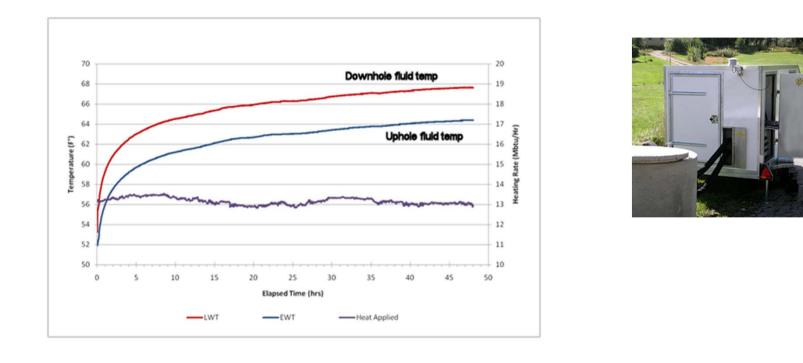

 $\lambda_{\rm B}$ = mean thermal conductivity

 λ_i = thermal conductivity of the ith component

 θ_i = fractional proportion of the ith component

Randomly orientated and distributed

Vertically layered (parallel to heat flow)

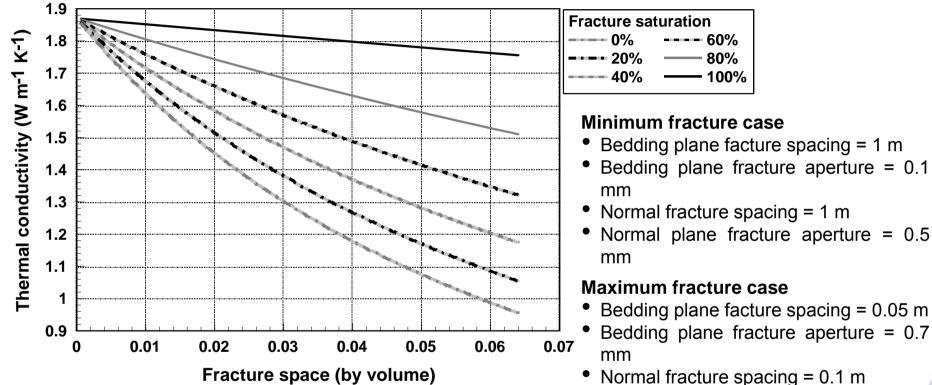


Geor

netric mean
$$\lambda_B = \prod_{i=1}^n \lambda_i^{\phi_i}$$

Thermal response test

Warm water circulated through a closed vertical loop with the uphole and downhole temperatures measured. From the evolution of temperature with time the thermal conductivity and borehole resistance are calculated.



Advantage the in-situ thermal conductivity for the rock mass over the length of the borehole is measured

Disadvantage expensive, only applicable to large schemes

© NERC All rights reserved

Theoretical calculation - chalk

Chalk matrix porosity 34%; thermal conductivity 1.87 W m⁻¹ K⁻¹

Chalk matrix is assumed to comprise Calcite, Smectite and saturated pores. Bedding plane fractures incorporated with a harmonic mean, normal fractues with an arithmetic mean. Normal plane fracture aperture = 5.0 mm

New standards

New standards (MIS 3005) require a robust value of thermal conductivity for the ground collector loop design. This is used in look up tables to calculate maximum power extracted per unit length of borehole or area of a horizontal ground array.

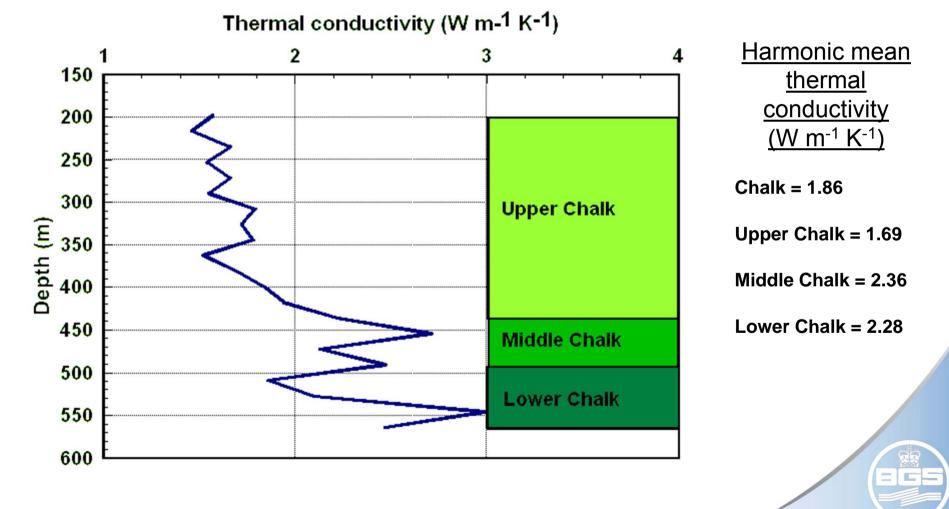
•	·	Ŭ			Sel	/	
Can this be obtained from viewing				มี มีการการการการการการการการการการการการการก	1.		
					STRATA CONSIGNA	i nobo	Depth
publiciy	available borehol	e scans) {		a , hana ya ya ana kuku na kuku na na na kukun 19 a gababata kuku na na na ha na	rs.ins.	rt. ins.
<u>www.bg</u> ome.htm	<u>s.ac.uk/data/bore</u> <u>าI</u>	holesca	ans,	<u>/h</u>	Band, allty; Elma Silistone laines and layers in parts, red/brown, few pelo groon phishes, deire staining 3/5 Lumps 4 Cone	274=== \$ 0	15 09 15 09 49 6
and in	Marl (silty) and Fine Siltstone terlayered, red/browns, pale late, vertical cracks, rippling,	green and		5	Mari, Mari (Milly) and Mino Siltstono, Interhaminated and Interlayered, sed/browns, pake greats and chocolate, variteal oracks, rippling, skeepens skeens, slip-layer or slump layer @ 7%/6, comestantinesmall carities, ocherous	12:65 41 6	.24 67 81 0
sheen	s, slip layer or slump layer @ cavities, ocherous surfaces	2 73/6, conta	aininę	uctivity (/W/mK)	here of Westhered Zero at 33/0 complete Cover below 3/0 Mapl, silty, possily Luinate', red/brown, few green spots, cavities above 85/0, gypsus undules below 85/0, gypsus layers (botelling 0/2) below 1/0, blackoned surfaces above \$5/0, soherous surfaces, said lealand, showing silt-filled cracks 31/3 = 35/6	1-1-6 5 5	26/37
		Min	Max	Recommended	Fine Siltatone, light greenich grey, brownich near dase, lasinated, rars salt peendonorphs, 9/0% gypous layer	030 1 0	86 5 2667
Unconsolidated rock	Sand, dry Gravel, dry Peat, soft lignite Clay/silt, dry	0.3 0.4 0.2 0.4	0.8 0.5 0.7 1.0	0.4 0.4 0.4 0.5			
	Clay/silt, water saturated Gravel, water saturated	0.9 1.6	2.3 2.0	1.7 1.8	and generalised tables	of	
	Claystone, siltstone	1.0	3.5	2.2	•		
	Sand, water saturated	1.5	4.0	2.4	thermal conductivity based	on	
	Hard coal	0.3	0.6	0.4	rach turne (a a)/DL (c)	40.	
	Gypsum	1.3	2.8	1.6	rock type (e.g. VDI 464	1 0: 🖉	
	Marl Sandstone	1.5 1.3	3.5 5.1	2.1 2.3			
Solid Sediments	Conglomerates	1.3	5.1	2.3	2010)		
	Limestone	2.5	4.0	2.8	/		22
	Dolomite	2.8	4.3	3.2			THE REAL
	Anhydrite	1.5	7.7	4.1		_	
	Salt	5.3	6.4	5.4			
							1075

Tables of UK thermal conductivities

BGS has also published tables of UK thermal conductivities based on formation and rock type.

System	Formation	Lithology	Code	nk	cond	se
Palaeogene						
	Barton Beds	SMST	109	10	2.12	0.06
		MDST	109	2	1.46	0.05
	Bracklesham Beds	SMST	109	14	2.20	0.16
		MDST	109	4	1.58	0.01
	London Clay	SMST	108	5	2.45	0.07
	Reading Beds	SMST	107	4	2.33	0.04
		MDST	107	10	1.63	0.11
Cretaceous						
	Chalk	CHLK	106	41	1.79	0.54
	Upper Greensand	SDST	105	18	2.66	0.19
	Gault	SMST	105	32	2.32	0.04
		MDST	105	4	1.67	0.11
	Hastings Beds	SLST.	102	2	2.01	
		SLCL	102	3	1.26	
Jurassic						
	Kimmeridge Clay	MDST	99	58	1.51	0.09
	Ampthill Clay	MDST	98	60	1.29	0.03
	Oxford Clay	MDST	97	27	1.56	0.09
	Kellaways	MDST	97	21	1.52	0.03
	Cornbrash	LMST	96	5	2.29	0.17
	Forest Marble	MDST	95	37	1.80	0.07
	Frome Clay	MDST	95	15	1.72	1.10
	Fullers Earth	MDST	95	47	1.95	0.05
	Upper Lias	SDST	93	13	2.87	0.12
		MDST	93	11	1.27	0.03
		SLMD	93	11	2.22	1.10

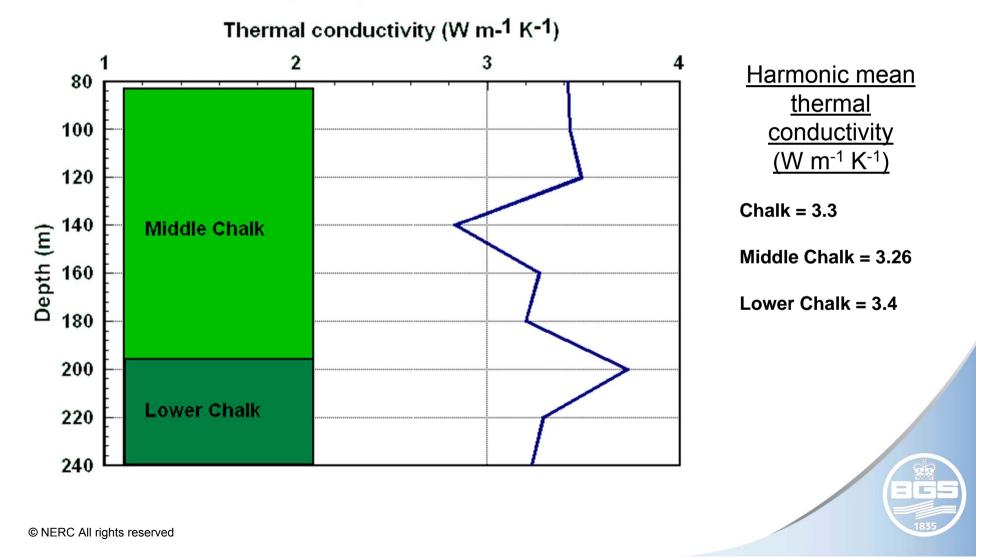
Part of table from Rollin, 1987, Catalogue of geothermal data for the land area of the United Kingdom. Third revision: April 1987. Investigation of the geothermal potential of the UK, British Geological Survey.


Produced as part of the Geothermal Energy Programme

But, where does the BGS data come from?

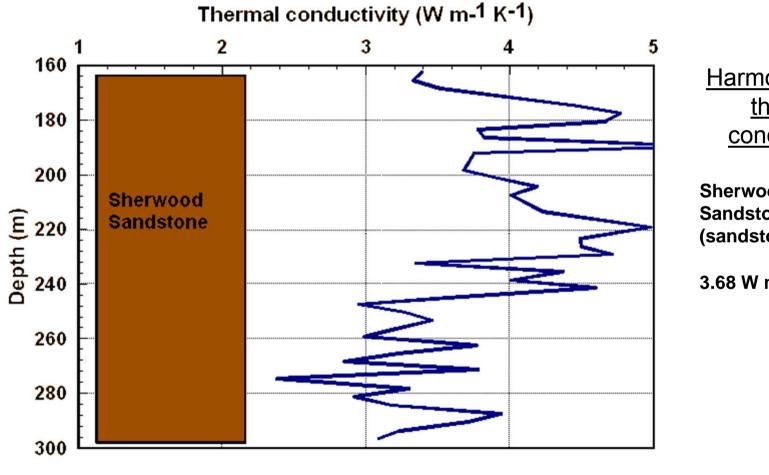
Southampton (441560 112020) Hampshire

Thermal conductivity measurements needle probe


Southampton geothermal well

Cleethorpes (530240 407090) Lincolnshire

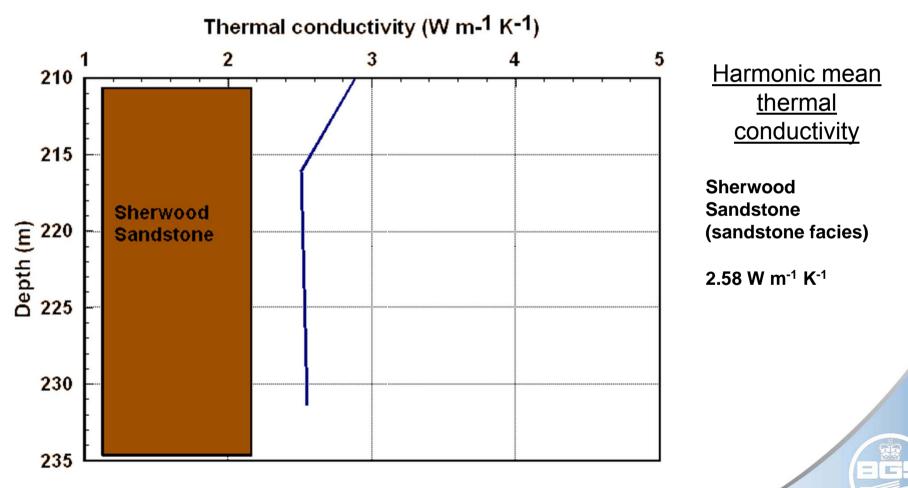
Thermal conductivity measurements pill box divided bar


Cleethorpes geothermal well

Weeton Camp (338900 435900) Lancashire

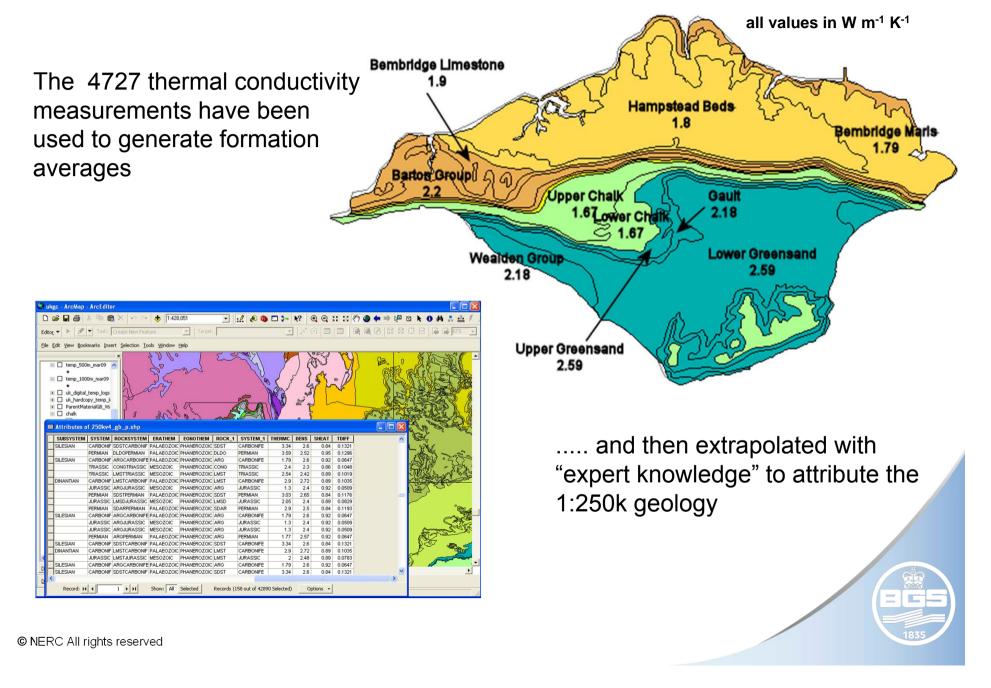
Thermal conductivity measurements pill box divided bar

Weeton Camp borehole


Harmonic mean thermal <u>conductivity</u>

Sherwood Sandstone (sandstone facies)

3.68 W m⁻¹ K⁻¹


Home Farm (443200 273100) Warwickshire

Thermal conductivity measurements divided bar

Home Farm borehole

Attribution of 1:250000 geology

Ground conditions

Site specific information

Reports of relevant parameters can be compiled for a site based on a post code , address or coordinates. Useful for designers of GSHP systems. An example is the GeoReport from BGS. This is modular in nature and tailored to the users requirements (see http://shop.bgs.ac.uk/GeoReports)

Unit	Age	Thermal conductivity W m ⁻¹ K ⁻¹	Thermal diffusivity m² day-¹	Thickness Metres	
Bedrock (below roc	khead)	<i>k</i> * 2			
Alluvium	Holocene	1.67	0.056	2-5	
River Terrace deposits	Quaternary	2.50 🎽	0.079	6-7	
London Clay Formation	Palaeogene	1.79	0.0849	1-5	
Harwich Formation	Palaeogene	2.4 🦽	0.1206	2	
Lambeth Group	Palaeogene	2.2	0.1078	<u> </u>	
Thanet Sand	Palaeogene	2.35	0.1074	25-30	
Chalk Group	Late Cretaceous	1.67	0.0745	200+	

The values quoted for the Alluvium and River Terrace deposits assume saturated conditions. In the event that the deposits dried out lower values for both thermal conductivity and thermal diffusivity would be more appropriate. Average thermal properties for a 100 m borehole are a thermal conductivity of 1.94 W m⁻¹ K⁻¹ and a thermal diffusivity of 0.0886 m² day⁻¹.

GSHP industry requirements

Can we provide

- Horizontal loop and vertical borehole reports (not modular)
- Delivered on-line by return
- Perhaps administered via a logon through the GSHPA website?
- At a cheaper price

.....but a vertical geological section requires manual input

British Geological	Survey		GeoReports
BG\$ Wallingfo Maclean Bulidi Crow mareh Gi Wallingford OX10 8BB	ng		
	op Ground Source	•	
	sed loop near surface system types, estimates of mean an		
cooling of residentia costs but relatively i external loop and is	t pumps (GBHP) can provide al and commercial buildings, high installation costs. Much strongly affected by the geo affect both the heating and ethods and costs.	GBHP systems have of the cost is associat logical and environme	relatively low running red with installation of the initial conditions at the site.
Includes: Location and extent o Predicted thermal co- Temperatures	rt wite nductivity at a depth of 1.5 m		
Extra information was Geological map extra Thirdness of superfic Coccelebildy			
Report Id: GR_96	99999'2		
Client reference:			

We need to work more closely together

- Our data needs ground truthing
- Could we gain access to thermal response tests on a quid pro quo basis
- We need a national register of where GSHPs are installed

Conclusions

- Thermal conductivity is a key parameter when designing closed loop ground collectors
- UK based tables of thermal conductivity are better than ones based on continental or overseas values, but they are still generalised
- Between us we have a valuable resource
 - 4727 lab based measurements
 - An ever increasing database of thermal response tests

We need to work more closely together