Ground Source Heat Pump Association Webinar Series 2020

<u>Design of closed loop borehole</u> <u>systems - (Part 2)</u>

Hydraulics

Robin Curtis – GeoScience / GSHPA

18th June 2020

Objectives ?

- To raise awareness of the issue
- Illustrate the impact on performance
- Show basic GSHP hydraulic design approach
- Audience

(Closed loop) Ground source "hydraulics" - the issue

from GSHP Rogues Gallery >

Why ? - Do the numbers...

```
50kW heat pump
COP? ~4
Electrical input = 50/4 = 12.5 kW
```

Pump power 11kW !! Effective COP = 50/(12.5+11) = 2.12 !!

(that's the first bit of bad news)

The real bad news?

There's nothing anyone can do about it.

Simple example -(of getting it wrong)

12 kW heat pump

Flow rate = 0.6 l/s

Told manufacturer = 3×60 metre boreholes in 32mm

Pressure drop per hole = ~15kPa (Re ~ 3200)

Pump selection = \sim Wilo 30/7

Simple example -(of getting it wrong)

12 kW heat pump

Clever driller - decides on 1 hole.

180m of 40mm !!

Pressure drop now: ~120kPa (Re ~ 8000)

Pump size - off the graph > Parasitic power = huge!

Other warning signs

"We only use 40mm U-tubes....."

"GSHP boreholes are always 100m deep....."

Where / how of ground loop heat transfer

Reynold's number

Re = ρ VD / μ

ρ = density
V=fluid velocity
D=hydraulic diameter
μ =dynamic viscosity

(dimensionless - NO units !)

Laminar < 2000 Turbulent > 4000

So > Increase Reynolds No:

Heat transfer improves

but.....

Pump power also goes up

Designer's hydraulic balancing act:

Maximise heat extraction/rejection

Minimise (circulation) pump power

ISSUE 1.1

MCS GUIDANCE DOCUMENT

Hydraulics Design Guide for MIS 3005

Procedure and charts for designing the hydraulics and associated pumping power of closed loop GSHP systems under MCS

Design Target

Ground loop circulating pump power < 2.5 - 3 % of heat pump thermal output. (from MIS 3005)

(Prefer a few % of compressor electrical power : <5%) Hydraulics -Pressure drop components:

- 1) Active element(s)
- 2) Headers
- 3) Heat pump
- 4) + contingency/fittings

Hydraulics -"fixed" parameters

minimum Heat Pump flow rate
 minimum freeze protection limit
 Pressure drop in heat pump - (beware !)

Non-laminar - (transition zone) Re >2100

Antifreeze issues (another Webinar !)

Viscosity > low at low temperatures Concentration for minimum freeze protection

Hydraulics the variables

- Borehole/loop lengths vs number
- Pipe diameter
- Borehole pipe configuration (eg 1U / 2U)
- Header arrangements

Closed loop GSHP Hydraulic Sizing Flow Chart

Note A

Note B

Note C

Note D

Note E

Note F

Note (

Note H

Normal

~30%

Permitted

Pressure

Drop

80kPa

(PPD)

Pressure drop calculator

- Input pipe diameter (internal) flow rate pipe length viscosity
- Output Reynolds number, Turbulent pressure drop Laminar pressure drop

Given: 20kW HP. HP flow rate = 0.95 l/s

Using EED or GLHEPRO or equivalent - get 1st attempt at Borehole depth, number and layout.

6 holes ~ 67m deep ie 400m of hole.

6 holes ~ 67m deep ie 400m of hole. (flow rate = 0.16 l/s per hole)

Using PD calculator

3 common pipe sizes - 25mm, 32mm, 40mm:

	Re	ΔP
25 =	2740	36 kPa
32 =	2140	11 kPa
40 =	1710	4 kPa

	Re	ΔΡ
25mm	2740	36 kPa
32mm	2140	11 kPa
40mm	1711	4 kPa

2nd go -

25mm - 7 holes 57m flow = 0.135 l/s Re = 2346 Δ P = 23 kPa 32mm - 6 holes 67m flow = 0.16 l/s Re = 2140 Δ P = 11 kPa 40mm - 5 holes 80m flow = 0.24 l/s Re = 2053 Δ P = 6 kPa

Repeat thermal calculations - iterate

Component	ΔΡ
Boreholes =	~12kPa
Headers =	~ 25kPa (depends on distance to plant room, and pipe diameter)
Total =	~27 kPa
Allow say 15%	~30kPa - fittings / manifolds / plant room etc.

(ok < 50kPa)

Add heat pump 10 kPa

For pump - need 40kPa (~ 4m head) at 0.95 l/s

Pump selection parameters

Flow rate = 0.95 l/s

Working pressure / head = ~ 40 kPa

Pump sizing

Don't blow it on the headers !

eg 200m or 300 metre long runs. = Large, costly, pipe installs.

Does the plant room really have to be this far away ?

Remember - we are installing for 50 - 100 years.

Pumps will be running 2000 to 4000 hours per annum - for 50 years +

Once the ground array is installed - it is IRREVERSIBLE !

COP > ENERGY / CARBON / RUNNING COST

Don't blow it on the Manifolds

Use properly designed low pressure drop GSHP manifolds

Not underfloor heating assemblies!!

Variable speed pumps

and

high efficiency pumps

Variable speed pumps

Beware new pumps with automatic speed control based on reducing flow as pressure Increases.

Opposite of what is required for ground loop!

Miracle Nano-Fluids ?

Avoid on ground loops -

(salesmen don't get it)

MCS Hydraulics Design Guide materials

https://mcscertified.com/standards-tools-library/

https://mcscertified.com/wpcontent/uploads/2019/08/GSHP-Hydraulics-Design-Guide-.pdf

https://mcscertified.com/wpcontent/uploads/2019/08/MCS-Hydraulics-Design-Pressure-Drop-Charts-v1.0-1.pdf

no more of these

please.....

Questions.....

and thank you www.gshp.org.uk

Robin Curtis info@gshp.org.uk

